一看到“比值”最大(性价比最高)就知道跟分数规划有关系了。(这里讲过分数规划)

然后看到 要选一个候选人 必须选他的前置,画画图就知道是一棵树。

所以这道题是二分比值,每个点的权值就是战斗力-费用*比值,然后判断在树上能否得到权值和$\geq 0$的方案。

那怎么判断?

这篇的T1讲过,典型的树上背包,像那道T1一样在树上暴力转移即可。其实这题的父子依赖性质跟那道T1差不多,因为连通块就是一片父子的依赖关系(当然最上边的根节点的祖先是还没处理到的)。

那树上每个点都要遍历一下它的所有儿子,对于每个儿子还要枚举以这个儿子为根的子树中选出的点的数量。

二分的时间复杂度是$O(log(ans))$,转移的时间复杂度$O(n^2)$。总时间复杂度是$O(n^2*log(ans))$。


这里证明一下转移的时间复杂度:

直观上看是$i,j,k$三重循环。

但是每个儿子的$n^2$个dp值只会更新给它的父亲。

换句话说,有一重循环是枚举儿子,而这是一棵树,每个儿子(也就是每个点)只会被枚举一次。

所以枚举儿子的循环是常数复杂度。

树上背包的时间复杂度就是$O(n^2)$而不是$O(n^3)$。


update:这是另一个大佬写的T2(此题)题解

【2018.10.1】【JSOI2016】最佳团体(bzoj4753)的更多相关文章

  1. [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序

    分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...

  2. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  3. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  4. BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

    BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...

  5. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  6. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  7. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

  8. BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)

    看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...

  9. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  10. bzoj4753[JSOI2016]最佳团体

    题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选). 虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案 即 ...

随机推荐

  1. 洛谷 P1438 无聊的数列

    题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]},支持两种操作: 1.1 ...

  2. 解决activeandroid no such table

    场景:activeandroid拷贝数据库 (1)复制sql数据库到项目的assets目录,例如/myapp/src/main/assets/prepop.db (2)确保manifest的AA_DB ...

  3. Lesson1

    #ifdef __cplusplus #include <cstdlib> #else #include <stdlib.h> #endif #include <SDL/ ...

  4. Cayley凯莱定理——一一对应

    定理 过$n$个有标志顶点的树的数目等于$n^{n-2}$. 此定理说明用$n-1$条边将$n$个已知的顶点连接起来的连通图的个数是$n^{n-1}$.也可以这样理解,将n个城市连接起来的树状网络有$ ...

  5. Web项目之Django基础

    Django目录: python项目Django(web服务) python项目Django(HTTP协议) python项目Django(Django的安装与使用) python项目Django(U ...

  6. PAT (Advanced Level) Practise - 1098. Insertion or Heap Sort (25)

    http://www.patest.cn/contests/pat-a-practise/1098 According to Wikipedia: Insertion sort iterates, c ...

  7. js的正则表达式总结

    1.8-20位数字 or  字母 or 特殊字符 var reg = /^[0-9a-zA-Z!@#$%^&*()_+-/.]{8,20}$/; 2.8-20位 数字+字母+特殊字符 //正则 ...

  8. [SDOi2012]Longge的问题 (数论)

    Luogu2303 [SDOi2012]Longge的问题 题目 题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N, ...

  9. UVa-232-纵横字谜的答案

    这一题的话,输出的时候,我们要按照3位输出,不能按照两位,因为是10*10的网格,所以就是100位,不管有没有100的起始格,它都是按照3位进行输出的,从题上的输出可以看到,不然的话,就会PE. 然后 ...

  10. 【IDE_PyCharm】PyCharm中配置当鼠标悬停时快速提示方法参数

    方法一:通过在settings里面设置当鼠标至于方法之上时给出快速提示 方法二:按住Ctrl键,光标放在任意变量或方法上都会弹出该变量或方法的详细信息,点击鼠标还能跳转到变量或方法的定义处