【2018.10.1】【JSOI2016】最佳团体(bzoj4753)
一看到“比值”最大(性价比最高)就知道跟分数规划有关系了。(这里讲过分数规划)
然后看到 要选一个候选人 必须选他的前置,画画图就知道是一棵树。
所以这道题是二分比值,每个点的权值就是战斗力-费用*比值,然后判断在树上能否得到权值和$\geq 0$的方案。
那怎么判断?
这篇的T1讲过,典型的树上背包,像那道T1一样在树上暴力转移即可。其实这题的父子依赖性质跟那道T1差不多,因为连通块就是一片父子的依赖关系(当然最上边的根节点的祖先是还没处理到的)。
那树上每个点都要遍历一下它的所有儿子,对于每个儿子还要枚举以这个儿子为根的子树中选出的点的数量。
二分的时间复杂度是$O(log(ans))$,转移的时间复杂度$O(n^2)$。总时间复杂度是$O(n^2*log(ans))$。
这里证明一下转移的时间复杂度:
直观上看是$i,j,k$三重循环。
但是每个儿子的$n^2$个dp值只会更新给它的父亲。
换句话说,有一重循环是枚举儿子,而这是一棵树,每个儿子(也就是每个点)只会被枚举一次。
所以枚举儿子的循环是常数复杂度。
树上背包的时间复杂度就是$O(n^2)$而不是$O(n^3)$。
update:这是另一个大佬写的T2(此题)题解。
【2018.10.1】【JSOI2016】最佳团体(bzoj4753)的更多相关文章
- [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序
分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...
- BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)
BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...
- BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划
BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...
- BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划
BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...
- [JSOI2016]最佳团体 DFS序/树形DP
题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...
- 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp
题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...
- Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)
题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...
- BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)
看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...
- bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)
菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...
- bzoj4753[JSOI2016]最佳团体
题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选). 虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案 即 ...
随机推荐
- 洛谷 P1309 瑞士轮
题目背景 在双人对决的竞技性比赛,如乒乓球.羽毛球.国际象棋中,最常见的赛制是淘汰赛和循环赛.前者的特点是比赛场数少,每场都紧张刺激,但偶然性较高.后者的特点是较为公平,偶然性较低,但比赛过程往往十分 ...
- codevs 爱改名的小融
都是三道水题 但我很难理解的是 string 能过 char 就WA 2967 题目描述 Description Wikioi上有个人叫小融,他喜欢改名. 他的名字都是英文,只要按顺序出现R,K,Y三 ...
- 洛谷 P1276 校门外的树(增强版)
题目描述 校门外马路上本来从编号0到L,每一编号的位置都有1棵树.有砍树者每次从编号A到B处连续砍掉每1棵树,就连树苗也不放过(记 0 A B ,含A和B):幸运的是还有植树者每次从编号C到D 中凡是 ...
- PHP高端课程
关于目后佐道IT教育 http://www.cnblogs.com/itpua/p/7710917.html 目后佐道IT教育的师资团队 http://www.cnblogs.com/itpua/p/ ...
- MVC 学习小总结
一般情况下新增字段首选现在数据库更新,然后再从数据库更新模型 第二选择是从模板添加字段更新数据库(面临删除所有数据可能,慎用) 第三是没有T4模板的前提下再模型完成操作然后修改model类防止mode ...
- git快速入门(MAC系统,github,ssh key)
如果使用过svn的话,git大致可以认为是多了本地库的svn.git先本地提交commit到本地库,然后再push到远程服务器的库.git是分布式的代码管理工具,基于SSH协议.ssh的作用就是为了不 ...
- Xcode4删除文件后missing file警告
1.运行终端,执行命令行进入missing file目录,然后运行 svn delete nameOfMissingFile 或 git rm nameOfMissingFile 2.删除隐藏的.sv ...
- Shift-Invariant论文笔记
ICML 2019 Making Convolutional Networks Shift-Invariant Again ICML 2019 Making Convolutional Network ...
- iCheck获取单选和复选框的值和文本
//获取单选和复选框的值//parameters.type:"radio","checkbox"//parameters.name:input-name//pa ...
- C++ STL容器之 map
map 是一种有序无重复的关联容器. 关联容器与顺序容器不同,他们的元素是按照关键字来保存和访问的,而顺序元素是按照它们在容器中的位置保存和访问的. map保存的是一种 key - value 的pa ...