一看到“比值”最大(性价比最高)就知道跟分数规划有关系了。(这里讲过分数规划)

然后看到 要选一个候选人 必须选他的前置,画画图就知道是一棵树。

所以这道题是二分比值,每个点的权值就是战斗力-费用*比值,然后判断在树上能否得到权值和$\geq 0$的方案。

那怎么判断?

这篇的T1讲过,典型的树上背包,像那道T1一样在树上暴力转移即可。其实这题的父子依赖性质跟那道T1差不多,因为连通块就是一片父子的依赖关系(当然最上边的根节点的祖先是还没处理到的)。

那树上每个点都要遍历一下它的所有儿子,对于每个儿子还要枚举以这个儿子为根的子树中选出的点的数量。

二分的时间复杂度是$O(log(ans))$,转移的时间复杂度$O(n^2)$。总时间复杂度是$O(n^2*log(ans))$。


这里证明一下转移的时间复杂度:

直观上看是$i,j,k$三重循环。

但是每个儿子的$n^2$个dp值只会更新给它的父亲。

换句话说,有一重循环是枚举儿子,而这是一棵树,每个儿子(也就是每个点)只会被枚举一次。

所以枚举儿子的循环是常数复杂度。

树上背包的时间复杂度就是$O(n^2)$而不是$O(n^3)$。


update:这是另一个大佬写的T2(此题)题解

【2018.10.1】【JSOI2016】最佳团体(bzoj4753)的更多相关文章

  1. [Jsoi2016]最佳团体 BZOJ4753 01分数规划+树形背包/dfs序

    分析: 化简一下我们可以发现,suma*ans=sumb,那么我们考虑二分ans,之后做树形背包上做剪枝. 时间复杂度证明,By GXZlegend O(nklogans) 附上代码: #includ ...

  2. BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包)

    BZOJ4753: [Jsoi2016]最佳团体(分数规划+树上背包) 标签:题解 阅读体验 BZOJ题目链接 洛谷题目链接 具体实现 看到分数和最值,考虑分数规划 我们要求的是一个\(\dfrac{ ...

  3. BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划

    BZOJ 4753 [Jsoi2016]最佳团体 | 树上背包 分数规划 又是一道卡精度卡得我头皮发麻的题-- 题面(--蜜汁改编版) YL大哥是24OI的大哥,有一天,他想要从\(N\)个候选人中选 ...

  4. BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划

    BZOJ_4753_[Jsoi2016]最佳团体_树形背包+01分数规划 Description JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人 ...

  5. [JSOI2016]最佳团体 DFS序/树形DP

    题目 洛谷 P4322 [JSOI2016]最佳团体 Description 茜茜的舞蹈团队一共有\(N\)名候选人,这些候选人从\(1\)到\(N\)编号.方便起见,茜茜的编号是\(0\)号.每个候 ...

  6. 【bzoj4753】[Jsoi2016]最佳团体 分数规划+树形背包dp

    题目描述 JSOI信息学代表队一共有N名候选人,这些候选人从1到N编号.方便起见,JYY的编号是0号.每个候选人都由一位编号比他小的候选人Ri推荐.如果Ri=0则说明这个候选人是JYY自己看上的.为了 ...

  7. Bzoj4753/洛谷P4432 [JSOI2016]最佳团体(0/1分数规划+树形DP)

    题面 Bzoj 洛谷 题解 这种求比值最大就是\(0/1\)分数规划的一般模型. 这里用二分法来求解最大比值,接着考虑如何\(check\),这里很明显可以想到用树形背包\(check\),但是时间复 ...

  8. BZOJ4753 JSOI2016最佳团体(分数规划+树形dp)

    看到比值先二分答案.于是转化成一个非常裸的树形背包.直接暴力背包的话复杂度就是O(n2),因为相当于在lca处枚举每个点对.这里使用一种更通用的dfs序优化树形背包写法.https://www.cnb ...

  9. bzoj4753: [Jsoi2016]最佳团体(分数规划+树形依赖背包)

    菜菜推荐的“水题”虐了我一天T T...(菜菜好强强qwq~ 显然是个分数规划题,二分答案算出p[i]-mid*s[i]之后在树上跑依赖背包,选k个最大值如果>0说明还有更优解. 第一次接触树形 ...

  10. bzoj4753[JSOI2016]最佳团体

    题意:01分数规划,但可选的数字之间存在森林形的依赖关系(可以认为0号点是个虚根,因为并不能选). 虽然有森林形的依赖关系,但还是可以套分数规划的思路,二分答案k,判断是否存在一个比值大于k的方案 即 ...

随机推荐

  1. mongodb-3.2.8 单机复制集安装

    规划: replSet 复制集名称: rs1 MongoDB数据库安装安装路径为:/usr/local/mongodb/ 复制集成员IP与端口: 节点1: localhost:28010   (默认的 ...

  2. (五)maven之外置maven

    eclipse外置maven eclipse内置的maven插件是固定版本,如果要用其他版本的maven,可以使用外置maven. ①    在菜单栏上点击“Windows”à“Preferences ...

  3. App Transport Security has blocked a cleartext HTTP

    打开info.plist源代码复制粘贴     <key>NSAppTransportSecurity</key>     <dict> <!--Includ ...

  4. vector的基本用法

    #include<iostream> #include<vector> #include<algorithm> using namespace std; int m ...

  5. socket的BeginConnect(EndPoint remoteEP,AsyncCallback callback,objcet state);个人理解

    1.socket.BeginConnect(); 其中的三个参数值EndPoint remoteEP,这个是用来指定连接的socket服务器的的地址 socket参数表 EndPoint remote ...

  6. 快学UiAutomator各种框架介绍

    Monkey 编写语言:命令行 运行环境:使用adb连接PC运行测试对象:Android平台自动化测试的一种手段,通过Monkey程序模拟用户触摸屏幕.滑动Trackball.按键等操作来对设备上的程 ...

  7. C03 程序逻辑

    程序逻辑 运算符 顺序结构 选择结构 循环结构 运算符 赋值运算符:= 比较运算符:>.<.==. >=.<=.!= 逻辑运算符:&&.||.! 顺序结构 在C ...

  8. java script DOM BOM

    onclick        当用户点击某个对象时调用的事件句柄.ondblclick     当用户双击某个对象时调用的事件句柄. onfocus        元素获得焦点.            ...

  9. 什么是Java内存模型中的happens-before

    Java内存模型JMM Java内存模型(即Java Memory Model , 简称JMM),本身是一种抽象的概念,并不真实存在,它描述的是一组规则或规范,通过这组规范定义了程序个各个变量(包括实 ...

  10. 智能指针之 weak_ptr

    1. weak_ptr 介绍 std::weak_ptr 是一种智能指针,它对被 std::shared_ptr 管理的对象存在非拥有性("弱")引用.在访问所引用的对象指针前必须 ...