题目链接

我DP是真的菜啊啊啊啊啊!

f[i][j]表示考虑前i个数,有i-j+1个数组成一个上升子序列,且不以i结尾的尾端最小值。

设a为j个数组成的序列,且以i结尾;b为i-j+1个数组成的序列,且不以i结尾。

从f[i][j]到f[i+1][j+1]的转移如下:

若a后面可以接上第i+1个数,那b就和原来一样。也就是f[i+1][j+1]=min(f[i+1][j+1],f[i][j])

如果a后面不能接上第i+1个数,那就接到b上。也就是f[i+1][i-j+1]=min(f[i+1][i-j+1],que[i])

代码奉上

#include<cstdio>
#include<cctype>
#include<iostream>
#include<cstring>
using namespace std;
inline long long read(){
long long num=,f=;
char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') f=-;
ch=getchar();
}
while(isdigit(ch)){
num=num*+ch-'';
ch=getchar();
}
return num*f;
} int f[][]; int que[];
int n;
int main(){
while(~scanf("%d",&n)){
memset(f,,sizeof(f));
for(int i=;i<=n;++i) que[i]=read();
f[][]=-;
for(int i=;i<=n;++i)
for(int j=;j<=i;++j)
if(f[i][j]!=f[][]){
if(que[i]<que[i+]) f[i+][j+]=min(f[i+][j+],f[i][j]);
if(f[i][j]<que[i+]) f[i+][i-j+]=min(f[i+][i-j+],que[i]);
}
if(f[n][n>>]==f[][]) printf("No!\n");
else printf("Yes!\n");
}
return ;
}

【Luogu】P1410子序列(DP)的更多相关文章

  1. (luogu P1410)子序列 [TPLY]

    子序列 题目链接:https://www.luogu.org/problemnew/show/P1410 吐槽: 这道题做得我心累 本来想好好练一练dp 刷刷水题来练练手感 于是乎打开了(普及+/提高 ...

  2. Luogu P1410 子序列

    题目大意: 给定一个长度为\(N\)(\(N\)为偶数)的序列,] 问能否将其划分为两个长度为\(\frac{N}{2}\)的严格递增子序列, 输入一共有\(50\)组数据,每组数据保证\(N \le ...

  3. HDU 1231.最大连续子序列-dp+位置标记

    最大连续子序列 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  4. [算法模版]子序列DP

    [算法模版]子序列DP 如何求本质不同子序列个数? 朴素DP 复杂度为\(O(nq)\).其中\(q\)为字符集大小. \(dp[i]\)代表以第\(i\)个数结尾的本质不同子序列个数.注意,这里对于 ...

  5. luogu P6835 概率DP 期望

    luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点 ...

  6. 洛谷 P1410 子序列(DP)

    这题的题解的贪心都是错误的...正解应该是个DP 考虑有哪些有关的条件:两个序列的当前长度, 两个序列的末尾数, 把这些都压进状态显然是会GG的 考虑两个长度加起来那一位的数一定是其中一个序列的末尾, ...

  7. Luogu P2516 [HAOI2010]最长公共子序列 DP

    首先$LIS$显然:$f[i][j]=max(f[i][j-1],f[i-1][j],(a[i]==b[j])*f[i-1][j-1])$ 考虑如何转移数量: 首先,不管$a[i]$是否等于$b[j] ...

  8. HDU 1003 Max Sum && HDU 1231 最大连续子序列 (DP)

    Max Sum Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Sub ...

  9. 题目:[NOIP1999]拦截导弹(最长非递增子序列DP) O(n^2)和O(n*log(n))的两种做法

    题目:[NOIP1999]拦截导弹 问题编号:217 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统.但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每一发 ...

随机推荐

  1. Permutations(copy)

    Given a collection of numbers, return all possible permutations. For example, [1,2,3] have the follo ...

  2. 在每天黄金时刻将数据库中数据获取包装成Excel表

    过程: 1.由Timer对象实现安排指定的任务在指定的时间进行重复的固定的延迟操作 a.设定时间间隔24小时:PERIOD_DAY = 24 * 60 * 60 * 100; b.指定每天执行操作的时 ...

  3. Android 两个ArrayList找出相同元素及单个ArrayList删除元素

    //从一个ArrayList中删除重复元素 List<String> arrayList1 = new ArrayList<String>(); arrayList1.add( ...

  4. svn亲笔操作

    1. 创建版本库 [root@iZ28dftuhfaZ db]# svnadmin create /var/svn-repositories/app-api/ . 导入数据到你的版本库[root@iZ ...

  5. watchguard 软件工程师内部招聘!

    作为watchguard正式员工,现发布公司最近的招聘信息,待遇优厚,请符合条件的朋友和我联系并将简历发给我,我会尽早联系公司人力部门. 我的邮件:daibao91888@163.com 博客:htt ...

  6. leecode 旋转数组

    描述 给定一个数组,将数组中的元素向右移动 k 个位置,其中 k 是非负数. 示例 1: 输入: [1,2,3,4,5,6,7] 和 k = 3 输出: [5,6,7,1,2,3,4] 解释: 向右旋 ...

  7. sping IOC的设计原理和高级特性

    1. IOC 是Spring的内核,字面意思是控制反转,并提出了DI依赖注入的概念. 2.Spirng 容器的设计中,一个是实现BeanFactory 接口的简单饿汉容器,另外一个是比较高级的Appl ...

  8. DAG上的动态规划---嵌套矩形(模板题)

    一.DAG的介绍 Directed Acyclic Graph,简称DAG,即有向无环图,有向说明有方向,无环表示不能直接或间接的指向自己. 摘录:有向无环图的动态规划是学习动态规划的基础,很多问题都 ...

  9. 关于highchts X时间轴比设置时间相差好几个小时的解决

    经过一番查询和研究发现,在曲线图里,x轴的UNIX时间戳是要乘以1000的(通过在线的UNIX转换,结果与原来没有乘以1000的时间戳相差甚远),不然显示的时间会有很大的误差,真是百思不得其解. 另外 ...

  10. 洛谷 p1141 01迷宫题解

    很长时间没发博客了,今天水一下 很多dalao说染色(普通的)过不了, 我怎么就过了 其实我也是今天才知道什么是染色(由@你听风在吼 dalao指导) 然后自己打了一个,也不知道叫不叫染色,反正是过了 ...