【NEFU 117 素数个数的位数】(素数定理)
Description
小明是一个聪明的孩子,对数论有着很浓烈的兴趣。
他发现求1到正整数10n 之间有多少个素数是一个很难的问题,该问题的难以决定于n 值的大小。
现在的问题是,告诉你n的值,让你帮助小明计算小于10n的素数的个数值共有多少位?
Input
输入数据有若干组,每组数据包含1个整数n(1 < n < 1000000000),若遇到EOF则处理结束。
Output
对应每组数据,将小于10n 的素数的个数值的位数在一行内输出,格式见样本输出。同组数据的输出,其每个尾数之间空一格,行末没有空格。
Sample Input
3
7
Sample Output
3
6
Hint
素数定理
题解
素数定理:\(\pi(x)\):小于x的素数个数
\(\pi(x)/(x/lnx)=1\),这个公式随着x的增长而愈发准确。
10进制的位数公式为\(lgx+1\)
Ans&=lg\frac{10^n}{ln^{(10^n)}} +1\\\
&=lg^{10^n}-lg^{ln^{10^n}} +1\\\
&= n-lg^{nln^{10}}+1\\\
&=n-(lg^n+lg^{ln^{10}})+1\\\
&=n-lg^n-lg^{ln^{10}}+1
\end {aligned}
\]
参考代码
#include<cmath>
#include<iostream>
using namespace std;
int main(){
int n;
while(cin>>n){
int m=double(n-log10(n)-log10(log(n)));
cout<<int(m)+1<<endl;
}
return 0;
}
【NEFU 117 素数个数的位数】(素数定理)的更多相关文章
- NEFU 117 - 素数个数的位数 - [简单数学题]
题目链接:http://acm.nefu.edu.cn/JudgeOnline/problemShow.php?problem_id=117 Time Limit:1000ms Memory Limi ...
- NEFU 117-素数个数的位数(素数定理)
题目地址:NEFU 117 题意:给你一个整数N(N<1e9).假设小于10^N的整数中素数的个数为π(N).求π(N)的位数是多少. 思路:题目的数据量非常大,直接求肯定TLE,所以考虑素数定 ...
- nefu117 素数个数的位数,素数定理
素数个数的位数 Time Limit 1000ms Memory Limit 65536K description 小明是一个聪明的孩子,对数论有着非常浓烈的兴趣.他发现求1到正整数10n 之间有多少 ...
- NEFU_117素数个数的位数
题目传送门:点击打开链接 Problem : 117 Time Limit : 1000ms Memory Limit : 65536K description 小明是一个聪明的孩子,对数论有着很浓烈 ...
- 素数个数的位数<Math>
小明是一个聪明的孩子,对数论有着很浓烈的兴趣.他发现求1到正整数10^n (10的n次方)之间有多少个素数是一个很难的问题,该问题的难点在于决定于10^n 值的大小. 告诉你n的值,并且用ans表示小 ...
- 素数定理 nefu 117
素数定理: 随着x的增长,P(x) ≍x/ln(x) ,P(x)表示(1,x)内的素数的个数. 这个定理,说明在1-x中,当x大到一定程度时,素数分布的概率为ln(x) 竟然还有一道题目. 素数个数的 ...
- 素数分布 - nefu 117
素数个数的位数 - nefu 117 普及一个公式: 位数公式:要求一个数x的位数,用公式:lg(x)+1 素数分布:n/ln(n) 所以直接求解n/ln(n)的位数就可以了 代码如下: #inclu ...
- nefu 117 素数定理
小明是一个聪明的孩子,对数论有着很浓烈的兴趣.他发现求1到正整数10n 之间有多少个素数是一个很难的问题,该问题的难以决定于n 值的大小.现在的问题是,告诉你n的值,让你帮助小明计算小于10n的素数的 ...
- LeetCode Count Primes 求素数个数(埃拉托色尼筛选法)
题意:给一个数n,返回小于n的素数个数. 思路:设数字 k =from 2 to sqrt(n),那么对于每个k,从k2开始,在[2,n)范围内只要是k的倍数的都删掉(也就是说[k,k2)是不用理的, ...
随机推荐
- 跟我一起玩Win32开发(8):绘图(A)
从本篇开始,我就不吹牛皮,那就吹吹兔皮吧.说说与绘图有关的东东. 要进行绘制,首先要得到一个DC,啥是DC呢?按字面翻译叫设备上下文,也可以翻译为设备描述表,它主要指API为我们封装了一些与显示设备相 ...
- [APIO2012]派遣 洛谷P1552 bzoj2809 codevs1763
http://www.codevs.cn/problem/1763/ https://www.lydsy.com/JudgeOnline/problem.php?id=2809 https://www ...
- Hadoop调度框架
大数据协作框架是一个桐城,就是Hadoop2生态系统中几个辅助的Hadoop2.x框架.主要如下: 1,数据转换工具Sqoop 2,文件搜集框架Flume 3,任务调度框架Oozie 4,大数 ...
- vs直接IP访问运行项目
找到IIS Express 正在运行的项目应用程序,点击网站,会出现配置路径,找到配置路径,显示隐藏的文件夹 localhost替换成本地IP,重新运行项目,然后就可以直接通过IP访问项目,好处就是便 ...
- angularjs 下select中ng-options使用
当我有一堆object数据要用下拉框进行显示选择时,可以使用到angularjs中的select中的ng-options的属性.官网网址:https://docs.angularjs.org/api/ ...
- Asp.Net MVC中捕捉错误路由并设置默认Not Found页面。
在Global中写一个Application_Error捕捉错误路由并重定向到Not Found页面.这里是全局性抓取错误路由,此处还可以写由错误路由导致访问失败的日志记录. protected vo ...
- 修改他人电脑的Windows登录密码
在别人电脑已登录Windows的情况下: 打开控制面板 -> 管理工具 -> 计算机管理 或者 对Win图标单击右键 -> 计算机管理 -> 本地用户和组 -> 用 ...
- 【学习笔记】深入理解js原型和闭包(18)——补充:上下文环境和作用域的关系
本系列用了大量的篇幅讲解了上下文环境和作用域,有些人反映这两个是一回儿事.本文就用一个小例子来说明一下,作用域和上下文环境绝对不是一回事儿. 再说明之前,咱们先用简单的语言来概括一下这两个的区别. 0 ...
- Apache CXF 框架结构和基本原理
CXF旨在为服务创建必要的基础设施,它的整体架构主要由以下几个部分组成: 1.Bus 它是C X F架构的主干,为共享资源提供了一个可配置的场所,作用非常类似于S p r i n g的Applicat ...
- Selenium私房菜系列2 -- XPath的使用【ZZ】
在编写Selenium案例时,少不免是要用到XPath的,现在外面关于XPath使用的参考资料很多,下面我直接转一篇关于XPath使用的文档.如果对XPath不熟悉请参考下文,你不需要去百度/Goog ...