poj - 3254 Corn Fields (状态压缩dp入门)
http://poj.org/problem?id=3254
参考:http://blog.csdn.net/accry/article/details/6607703
农夫想在m*n的土地上种玉米,但是有的土地很贫瘠,所以不能种,每块土地标为1的表示能种,标为0的表示不能种,并且种玉米的土地不能相邻,
问有多少种合法的种植方案.(全部不种也算一种)
第一道状压,理解了比较久的时间.
就是用二进制的0和1代表土地种还是不种,这样每一行都可以用一个2进制数表示,列数<=12,故最多有2<<12种状态.
代表一个状态,就可以建立状态转移方程.dp[i][j]代表第i行状态为j时总的方案数,dp[i][j]=sigma(dp[i-1][j']);
判断冲突充分利用了位运算的性质,比如某个状态是否有相邻的1存在则状态x&(x>>1) 或者x&(x<<1)即可.因为等于向左或向右移动一位.
判断是否跟上一行的冲突也是一样.
用滚动数组总是写的不对,好像是初始化的问题.
#include <iostream>
#include <cstdio>
#include <cmath>
#include <vector>
#include <cstring>
#include <string>
#include <algorithm>
#include <string>
#include <set>
#include <functional>
#include <numeric>
#include <sstream>
#include <stack>
//#include <map>
#include <queue>
#include <deque>
//#pragma comment(linker, "/STACK:102400000,102400000")
#define CL(arr, val) memset(arr, val, sizeof(arr)) #define ll long long
#define INF 0x7f7f7f7f
#define lc l,m,rt<<1
#define rc m + 1,r,rt<<1|1
#define pi acos(-1.0) #define L(x) (x) << 1
#define R(x) (x) << 1 | 1
#define MID(l, r) (l + r) >> 1
#define Min(x, y) (x) < (y) ? (x) : (y)
#define Max(x, y) (x) < (y) ? (y) : (x)
#define E(x) (1 << (x))
#define iabs(x) (x) < 0 ? -(x) : (x)
#define OUT(x) printf("%I64d\n", x)
#define lowbit(x) (x)&(-x)
#define Read() freopen("a.txt", "r", stdin)
#define Write() freopen("b.txt", "w", stdout);
#define maxn 110
#define maxv 5010
#define mod 1000000000
using namespace std;
int n,m,top=;
int state[],num[];
int dp[][]; //最多是600个状态,不知道是以什么方式算出来的
int cur[];
inline bool ok(int x) //判断同一行是否有相邻的1
{
if(x&x<<) return ;
return ;
}
void init() //初始化 2^m个状态,把有相邻1的状态的去掉
{
top=;
int total=<<m;
for(int i=;i<total;i++)
if(ok(i)) state[++top]=i;
}
inline bool fit(int x,int k) //判断状态x和读入的第k行是否冲突,注意cur[k]中1代表不能种,
{ //所以只要相与为1则表示不行
if(x&cur[k]) return ;
return ;
}
int main()
{
//Read();
while(~scanf("%d%d",&n,&m))
{
init();
memset(dp,,sizeof(dp));
for(int i=;i<=n;i++)
{
cur[i]=;
int num;
for(int j=;j<=m;j++) //这里是为0表示可以种,为1表示是不可以种
{ //注意和上面区分,这里主要是为了判断冲突.
scanf("%d",&num);
if(!num) cur[i]+=(<<(m-j));//把每一行转换成2进制,并用cur存储
}
//printf("%d\n",cur[i]);
}
for(int i=;i<=top;i++) //初始化第一行,
{
if(fit(state[i],)) //不冲突表示可以放
dp[][i]=;
}
for(int i=;i<=n;i++)
{
for(int j=;j<=top;j++)
{
if(!fit(state[j],i)) continue; //判断第i行和读入的图是否冲突
for(int k=;k<=top;k++)
{
if(!fit(state[k],i-)) continue; //判断第i-1行是否冲突
if(state[j]&state[k]) continue;//判断第i行和第i-1行是否冲突
dp[i][j]=(dp[i][j]+dp[i-][k])%mod;
}
}
}
int ans=;
for(int i=;i<=top;i++)
{
ans=(ans+dp[n][i])%mod;
}
printf("%d\n",ans);
}
return ;
}
poj - 3254 Corn Fields (状态压缩dp入门)的更多相关文章
- POJ 3254 Corn Fields(状态压缩DP)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4739 Accepted: 2506 Descr ...
- POJ 3254 Corn Fields (状态压缩DP)
题意:在由方格组成的矩形里面种草,相邻方格不能都种草,有障碍的地方不能种草,问有多少种种草方案(不种也算一种方案). 分析:方格边长范围只有12,用状态压缩dp好解决. 预处理:每一行的障碍用一个状态 ...
- POJ 3254. Corn Fields 状态压缩DP (入门级)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 9806 Accepted: 5185 Descr ...
- POJ 3254 Corn Fields 状态压缩DP (C++/Java)
id=3254">http://poj.org/problem? id=3254 题目大意: 一个农民有n行m列的地方,每一个格子用1代表能够种草地,而0不能够.放牛仅仅能在有草地的. ...
- POJ 3254 Corn Fields状态压缩DP
下面有别人的题解报告,并且不止这一个状态压缩题的哦···· http://blog.csdn.net/accry/article/details/6607703 下面是我的代码,代码很挫,绝对有很大的 ...
- [ACM] POJ 3254 Corn Fields(状态压缩)
Corn Fields Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 8062 Accepted: 4295 Descr ...
- poj 3254 Corn Fields 国家压缩dp
意甲冠军: 要在m行n陆行,有一些格您可以种树,别人做不到的.不相邻的树,我问了一些不同的共同拥有的法律. 分析: 从后往前种,子问题向父问题扩展,当种到某一格时仅仅有他和他后面的n-1个格子的情况对 ...
- POJ 3254 Corn Fields 状态压缩
这题对我真的非常难.实在做不出来,就去百度了,搜到了一种状压DP的方法.这是第一种 详细见凝视 #include <cstdio> #include <cstring> #in ...
- poj 3254 Corn Fields 状压dp入门
题目链接 题意 在\(M\times N\)的\(0,1\)格子上放东西,只有标记为\(1\)的格子可以放东西,且相邻的格子不能同时放东西.问有多少种放法. 思路 参考:swallowblank. \ ...
随机推荐
- Android学习笔记(十六) ContentProvider
1.相关概念 ContentProvider:不同应用程序之间进行数据交换的标准API:程序“暴露”数据的方法. ContentResolver:一个程序访问另一个程序被“暴露”的数据的方法. Uri ...
- https为数据传输保驾护航
为什么要使用https 谷歌官网已宣布,今年7月起,Chrome浏览器的地址栏将把所有HTTP标示为不安全网站. 在客户端与服务器数据传输过程中,http协议传输是不安全的,一般情况下,http协议的 ...
- Outlook 数据文件(.pst 和 .ost)简介
使用 Microsoft Outlook 时,电子邮件.日历.任务和其他项目保存在邮件服务器或计算机上,或者同时保存在这两个位置.如果 Outlook 项目保存在计算机上,则它们保存在 Outlook ...
- leetcode_919. Complete Binary Tree Inserter_完全二叉树插入
https://leetcode.com/problems/complete-binary-tree-inserter/ 给出树节点的定义和完全二叉树插入器类的定义,为这个类补全功能.完全二叉树的定义 ...
- feign 负载均衡熔断器
feign:和zuul配合进行负载均衡. 注解的含义: @EnableDiscoveryClient 声明它是一个资源服务端,即可以通过某些接口调用一些资源: @EnableFeignClients ...
- docker存储管理
Docker 镜像的元数据 repository元数据 repository在本地的持久化文件存放于/var/lib/docker/image/overlay2/repositories.json中 ...
- Java数据结构和算法(四)--链表
日常开发中,数组和集合使用的很多,而数组的无序插入和删除效率都是偏低的,这点在学习ArrayList源码的时候就知道了,因为需要把要 插入索引后面的所以元素全部后移一位. 而本文会详细讲解链表,可以解 ...
- Android N requires the IDE to be running with Java 1.8 or later
Android Studio需要两个JDK: ide jdk和project jdk: 前者是IDE本身运行使用的JDK. 后者用于编译Java代码 Project JDK 可以通过file-&g ...
- 最小生成树 || HDU 1301 Jungle Roads
裸的最小生成树 输入很蓝瘦 **并查集 int find(int x) { return x == fa[x] ? x : fa[x] = find(fa[x]); } 找到x在并查集里的根结点,如果 ...
- STL || HDU 1894 String Compare
如果一个词包含再另一个词的前面(前缀),是一对前缀,求一共有多少对 *解法:STL万岁 #include<string>:https://www.cnblogs.com/SZxiaochu ...