LIS(最长上升子序列)的三种经典求法
求最长上升子序列的三种经典方案:
题型简介:
给定一个长度为 $ N $ 的数列,求它数值单调递增的子序列长度最大为多少。即已知有数列 $ A $ , $ A={A_1,A_2....A_n} $ ,求 $ A $ 的任意子序列 $ B $ ( $ B={A_{k_1},A_{k_2}....A_{k_p}} $ ),使 $ B $ 满足 $ k_1<k_2<....<k_p $ 且 $ A_{k_1}<A_{k_2}<....<A_{k_p} $ 。现求 $ p $ 的最大值。
$ solution\quad 1: $
先说一种最普遍的方法,因为所求为子序列,所以这道题很容易想到一种线性动态规划。我们需要求最长上升子序列,为了上升我们肯定要知道我们当前阶段最后一个元素为多少,为了最长我们还要知道当前我们的序列有多长。我们可以用前者来充当第一维描述:设 $ F[i] $ 表示以 $ A[i] $ 为结尾的最长上身子序列的长度,为了保证保证元素单调递增我们肯定只能从 $ i $ 前面的且末尾元素比 $ A[i] $ 小的状态转移过来:
$ F[i]=^{max}_{0\leq j<i,A[j]<a[i]}\{F[j]+1\} $
初始值为 $ F[0]=0 $ ,而答案可以是任何阶段中只要长度最长的那一个,所以我们边转移边统计答案。
复杂度: $ O(n^2) $
$ code\quad 1: $
#include<iostream>
#include<cstdio>
#define ll long long
#define rg register int
using namespace std;
int n,ans;
int a[10005];
int f[10005];
int main(){ cin>>n;
for(rg i=1;i<=n;++i) cin>>a[i];
for(rg i=1;i<=n;++i){
for(rg j=1;j<i;++j) //枚举转移
if(a[j]<a[i])f[i]=max(f[i],f[j]);
++f[i]; ans=max(ans,f[i]); //更新答案
}cout<<ans<<endl;
return 0;
}
$ solution\quad 2: $
我们发现上一种方法会枚举前面较小的位置,我们考虑能否用数据结构优化,首先将转移方程列一下:
$ F[i]=^{max}_{0\leq j<i,A[j]<a[i]}\{F[j]+1\} $
我们发现大括号中的 $ 1 $ 与 $ j $ 没有任何关系,所以我们将它提取出来:
$ F[i]=1+~~^{max}_{0\leq j<i,A[j]<a[i]}\{F[j]\} $
然后我们发现我们只需要将比 $ i $ 小的所有的符合 $ A[j]<A[i] $ 的 $ F[j] $ 的最大值求出来,但是这个条件 $ A[j]<A[i] $ 实在是太麻烦了,所以我们换一种思维方法:对于原序列每个元素,它有一个下标和一个权值,最长上升子序列实质就是求最多有多少元素它们的下标和权值都单调递增。
于是我们将 $ A $ 数组的每一个元素先记下他现在的下标,然后按照权值从小到大排序。接着我们按从小到大的顺序枚举 $ A $ 数组,(此时权值已经默认单调递增了)我们的转移也就变成从之前的标号比它小的状态转移过来,这个我们只需要建立一个与编号为下标维护长度的最大值的树状数组即可,枚举 $ A $ 数组时按元素的序号找到它之前序号比他小的长度最大的状态更新,然后将它也加入树状数组中。 期望复杂度: $ O(nlog(n)) $
$ code\quad 2: $
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
#define rg register int
using namespace std;
int n;
int s[200005];
struct su{
int v,id; //按照权值为第一关键字保证算法正确性
inline bool operator <(su x){
if(v==x.v)return id>x.id; //按照序号从大到小可以保证所求为上升子序列
return v<x.v; //(针对标号)因为相同权值的数,前面的状态不能转移给后面
} //(针对标号)从大到小枚举就不会出现这种情况
}a[200005];
inline void add(int x,int y){
for(;x<=n;x+=x&-x) s[x]=max(s[x],y);
}
inline int ask(int x){
rg res=0;
for(;x>=1;x-=x&-x) res=max(s[x],res);
return res;
}
int main(){
cin>>n;
for(rg i=1;i<=n;++i)
cin>>a[i].v,a[i].id=i;
sort(a+1,a+n+1);
for(rg i=1;i<=n;++i)
add(a[i].id,ask(a[i].id)+1);
cout<<ask(n)<<endl;
return 0;
}
关于树状数组求最长上升子序列的方案及方案数,这个需要结构体来实现,构建结构体数组使其中每一个元素可以包含多个信息,这样在树状数组更新时可以做到顺便兼顾记录前驱,以及累计方案数(需要去重)。关于具体如何实现,可以参见我出的这场考试中的第二题:五彩棒
另外真的很抱歉,博主现在拿的平板,家里电脑坏了,不能具体解答。
$ solution\quad 3: $
这是最快的方法:贪心加二分查找
我之前说过:我们肯定要知道我们当前阶段最后一个元素为多少,还有当前我们的序列有多长。前两种方法都是用前者做状态,我们为什么不可以用后做状态呢?:设 $ F[i] $ 表示长度为 $ i $ 的最长上升子序列的末尾元素的最小值,我们发现这个数组的权值一定单调不降(仔细想一想,这就是我们贪心的来由)。于是我们按顺序枚举数组 $ A $ ,每一次对 $ F[] $ 数组二分查找,找到小于 $ A[i] $ 的最大的 $ F[j] $ ,并用它将 $ F[j+1] $ 更新。
注意:这个方法虽快,但是讲实话还是树状数组好一些,因为对于最长上升子序列的方案输出和计算方案数(upd:很抱歉咕掉了,现在补一下坑,在上面第二种方法结尾),树状数组有很多优势!二分查找因为贪心的缘故会被限制。
期望复杂度: $ O(nlogn) $
$ code\quad 3: $
#include<iostream>
#include<cstdio>
#include<algorithm>
#define ll long long
#define rg register int
using namespace std;
int n;
int a[200005];
int f[200005];
int main(){
cin>>n;
for(rg i=1;i<=n;++i) cin>>a[i];
rg ans=1; f[1]=a[1];
for(rg i=2;i<=n;++i){
rg l=1,r=ans,mid;
while(l<=r){
mid=(l+r)>>1;
if(a[i]<=f[mid])r=mid-1;
else l=mid+1;
}f[l]=a[i];
if(l>ans)++ans;
}cout<<ans<<endl;
return 0;
}
LIS(最长上升子序列)的三种经典求法的更多相关文章
- 算法设计 - LCS 最长公共子序列&&最长公共子串 &&LIS 最长递增子序列
出处 http://segmentfault.com/blog/exploring/ 本章讲解:1. LCS(最长公共子序列)O(n^2)的时间复杂度,O(n^2)的空间复杂度:2. 与之类似但不同的 ...
- POJ - 3903 Stock Exchange(LIS最长上升子序列问题)
E - LIS Time Limit:1000MS Memory Limit:65536KB 64bit IO Format:%I64d & %I64u Descripti ...
- hdu 5256 序列变换(LIS最长上升子序列)
Problem Description 我们有一个数列A1,A2...An,你现在要求修改数量最少的元素,使得这个数列严格递增.其中无论是修改前还是修改后,每个元素都必须是整数. 请输出最少需要修改多 ...
- POJ 3903 Stock Exchange (E - LIS 最长上升子序列)
POJ 3903 Stock Exchange (E - LIS 最长上升子序列) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action ...
- 动态规划模板1|LIS最长上升子序列
LIS最长上升子序列 dp[i]保存的是当前到下标为止的最长上升子序列的长度. 模板代码: int dp[MAX_N], a[MAX_N], n; int ans = 0; // 保存最大值 for ...
- POJ 1887 Testingthe CATCHER (LIS:最长下降子序列)
POJ 1887Testingthe CATCHER (LIS:最长下降子序列) http://poj.org/problem?id=3903 题意: 给你一个长度为n (n<=200000) ...
- LIS最长上升子序列三种方法 (模板)
O(n^)的方法: #include <iostream> #include <stdio.h> #include <cstring> #include <a ...
- 【noi 2.6_1759】LIS 最长上升子序列(DP,3种解法)
题意我就不写了.解法有3种: 1.O(n^2).2重循环枚举 i 和 j,f[i]表示前 i 位必选 a[i] 的最长上升子序列长度,枚举a[j]为当前 LIS 中的前一个数. 1 #include& ...
- LIS(最长上升子序列)的 DP 与 (贪心+二分) 两种解法
正好训练赛来了一道最长递减序列问题,所以好好研究了一下最长递增序列问题. B - Testing the CATCHER Time Limit:1000MS Memory Limit:3000 ...
随机推荐
- shell的case-esac
case ... esac 与其他语言中的 switch ... case 语句类似,是一种多分枝选择结构. case 语句匹配一个值或一个模式,如果匹配成功,执行相匹配的命令.case语句格式如下: ...
- 使用Unity做2.5D游戏教程(二)
最近在研究Unity 3D,看了老外Marin Todorov写的教程很详细,就翻译过来以便自己参考,翻译不好的地方请多包涵. 这是使用Unity 游戏开发工具制作一个简单的2.5D 游戏系列教程的第 ...
- LightOJ——1066Gathering Food(BFS)
1066 - Gathering Food PDF (English) Statistics Forum Time Limit: 2 second(s) Memory Limit: 32 MB W ...
- BZOJ 1043 [HAOI2008]下落的圆盘 ——计算几何
倒着考虑,加入一个圆,判断和前面有没有完全覆盖的情况. 如果没有,和圆盘一一取交集,然后计算它们的并集,然后计算即可. #include <map> #include <cmath& ...
- 启动uwsgi报错error while loading shared libraries: libpcre.so.1:
启动uwsgi时候报错: [root@ richie]# /usr/bin/uwsgi --ini /usr/local/nginx/conf/uwsgi.ini /usr/bin/uwsgi: er ...
- Hadoop 3.1.0 在 Ubuntu 16.04 上的安装过程
安装过程主要参考官方文档: http://hadoop.apache.org/docs/current/hadoop-project-dist/hadoop-common/SingleCluster. ...
- 【bzoj4568】【Scoi2016】幸运数字 (线性基+树上倍增)
Description A 国共有 n 座城市,这些城市由 n-1 条道路相连,使得任意两座城市可以互达,且路径唯一.每座城市都有一个幸运数字,以纪念碑的形式矗立在这座城市的正中心,作为城市的象征.一 ...
- css解析规则
1.因为css对空格不敏感,因此在每个样式后都要加一个分号,不然会把写在后面的样式当成一个整体来解析,直到遇到分号为止. 2.当遇见不认识的属性或值时,将忽略这个属性,继续解析后面的属性. 3.对于复 ...
- hdu 4430 Yukari's Birthday 枚举+二分
注意会超long long 开i次根号方法,te=(ll)pow(n,1.0/i); Yukari's Birthday Time Limit: 12000/6000 MS (Java/Others) ...
- git(二):一些简单入门命令
一.创建仓储(版本库) 可以创建在空目录下创建git仓库,也可以在已有项目里创建git仓储. $ mkdir NewName //仓储名 $ cd Newname //进入到该仓储目录中 $ git ...