孤立森林(IForest)代码实现及与PyOD对比
孤立森林(Isolation Forest)是经典的异常检测算法(论文网址)。本文用python对其进行实现,以及与常用的异常检测包PyOD进行效果对比。
简单来说,孤立森林(IForest)中包含若干孤立树(ITree),每颗树的创建是独立的,与其它树无关。假设数据集包含$n$个样本,每个样本都包含$m$个实数特征。在创建每颗孤立树时,根节点首先包含所有$n$个样本。对于每个节点,随机抽取一个特征,在该特征的最大与最小值之间随机取一数$p$,将小于$p$的样本划分在左子节点,将大于$p$的样本划分在右子节点。划分直到叶节点只包含一个样本,或达到树高为止,文中树高定义为$\text{ceil}(\log_2n)$。构建好IForest后的测试阶段,就是计算样本在每颗孤立树上被划分到叶节点的平均路径长度,作为计算异常分数的依据。显然,划分路径越短,异常的可能性越高。
实现代码如下:
#%% 函数定义
import torch
import numpy as np
import matplotlib.pyplot as plt def iTree(X:torch.Tensor, e, l):
# X数据集,e当前路径长,l树高最大值
if e >= l or len(X) <= 1:
return [0, len(X)] # 0 非叶子节点
q = np.random.randint(0, len(X[0]))
M, m = X[:, q].max(), X[:, q].min()
p = np.random.rand()*(M - m) + m
lchild = iTree(X[X[:,q] < p,:], e+1, l)
rchild = iTree(X[X[:,q] >= p,:], e+1, l)
return [1, lchild, rchild, q, p]
def c(n):
c = 0 if n == 1 else 2*(np.log(n-1)+0.5772156649) - (2*(n-1)/n)
return c
def PathLength(x, T, e):
# x样本,T树,e当前路径长
if T[0] == 0:
return e + c(T[1])
if x[T[3]] < T[4]:
return PathLength(x, T[1], e+1)
return PathLength(x, T[2], e+1)
def myIForest(X, t, psi):
# X训练集,t树数量,psi子采样
Ts = []
l = np.ceil(np.log(psi))
for i in range(t):
x_i = np.random.choice(range(len(X)), [psi], replace=False)
Ts .append(iTree(X[x_i], 0, l))
return Ts
def anomalyScore(x, Ts, psi):
length = 0
for T in Ts:
length += PathLength(x, T, 0)
length /= len(Ts)
s = 2**(-length/c(psi))
return s
#%% 定义正常分布、超参数、绘图矩阵
torch.manual_seed(0)
np.random.seed(0)
points = torch.randn([512, 2])
points[-80:] = torch.randn([80, 2])/3+4
t, psi = 100, 256
x, y = np.arange(-4.5, 5.5, 0.1), np.arange(-4.5, 5.5, 0.1)
X, Y = np.meshgrid(x, y)
XY = np.stack([X,Y], -1)
Z = np.zeros_like(X)
#%% 自定义孤立森林、异常值可视化、决策边界
myTs = myIForest(points, t, psi)
for i in range(XY.shape[0]):
for j in range(XY.shape[1]):
Z[i,j] = anomalyScore(XY[i, j], myTs, psi)
plt.plot(points[:,0],points[:,1], '.', c = "purple", alpha = 0.3)
plt.contourf(X,Y,Z)
cont = plt.contour(X,Y,Z, levels=[0.55])
plt.clabel(cont, inline=True, fontsize=10)
plt.show()
#%% pyOD孤立森林、异常值可视化、决策边界
from pyod.models.iforest import IForest
ifor = IForest(t, psi, 0.1, random_state=0)
ifor.fit(points)
h, w = XY.shape[0], XY.shape[1]
XY = XY.reshape(-1, 2)
Z = Z.reshape(-1)
Z = ifor.decision_function(XY)
Z = Z.reshape(h, w)
XY = XY.reshape(h,w,2) plt.plot(points[:,0],points[:,1], '.', c = "purple", alpha = 0.3)
plt.contourf(X,Y,Z)
cont = plt.contour(X,Y,Z, levels=[0]) #决策边界为0
plt.clabel(cont, inline=True, fontsize=10)
plt.show()
自定义孤立森林和PyOD定义的孤立森林可视化结果分别如下左右图所示:
![]() |
|
效果相似。其中自定义代码完全按照论文伪代码实现,使用二叉搜索树的平均失败搜索长度进行归一化,异常分数取值$(0,1)$。PyOD的异常分数取值似乎是$(-1,1)$,以0为区分阈值,即把自定义比例的正常样本的异常分数设置为小于0,大于0则为异常样本。此处设置10%为异常,90%正常。另外,由于自定义代码没有使用并行策略,运行时间会比PyOD长得多。
孤立森林(IForest)代码实现及与PyOD对比的更多相关文章
- 异常检测-基于孤立森林算法Isolation-based Anomaly Detection-1-论文学习
论文http://202.119.32.195/cache/10/03/cs.nju.edu.cn/da2d9bef3c4fd7d2d8c33947231d9708/tkdd11.pdf 1. INT ...
- 26.异常检测---孤立森林 | one-class SVM
novelty detection:当训练数据中没有离群点,我们的目标是用训练好的模型去检测另外发现的新样本 outlier dection:当训练数据中包含离群点,模型训练时要匹配训练数据的中心样 ...
- 孤立森林(isolation forest)
1.简介 孤立森林(Isolation Forest)是另外一种高效的异常检测算法,它和随机森林类似,但每次选择划分属性和划分点(值)时都是随机的,而不是根据信息增益或者基尼指数来选择. 在建树过程中 ...
- 异常值检测方法(Z-score,DBSCAN,孤立森林)
机器学习_深度学习_入门经典(博主永久免费教学视频系列) https://study.163.com/course/courseMain.htm?courseId=1006390023&sh ...
- 【异常检测】孤立森林(Isolation Forest)算法简介
简介 工作的过程中经常会遇到这样一个问题,在构建模型训练数据时,我们很难保证训练数据的纯净度,数据中往往会参杂很多被错误标记噪声数据,而数据的质量决定了最终模型性能的好坏.如果进行人工二次标记,成本会 ...
- 异常检测-基于孤立森林算法Isolation-based Anomaly Detection-2-实现
参考https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.IsolationForest.html#sklearn.en ...
- 孤立森林(Isolation Forest)
前言随着机器学习近年来的流行,尤其是深度学习的火热.机器学习算法在很多领域的应用越来越普遍.最近,我在一家广告公司做广告点击反作弊算法研究工作.想到了异常检测算法,并且上网调研发现有一个算法非常火爆, ...
- 异常检测-基于孤立森林算法Isolation-based Anomaly Detection-3-例子
参考:https://scikit-learn.org/stable/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-e ...
- 使用VAE、CNN encoder+孤立森林检测ssl加密异常流的初探——真是一个忧伤的故事!!!
ssl payload取1024字节,然后使用VAE检测异常的ssl流. 代码如下: from sklearn.model_selection import train_test_split from ...
- K:树、二叉树与森林之间的转换及其相关代码实现
相关介绍: 二叉树是树的一种特殊形态,在二叉树中一个节点至多有左.右两个子节点,而在树中一个节点可以包含任意数目的子节点,对于森林,其是多棵树所组成的一个整体,树与树之间彼此相互独立,互不干扰,但其 ...
随机推荐
- Kubernetes-6:Pod生命周期介绍(init Container)
Pod生命周期 生命周期 1.API server调用kubelet下达Pod创建指令 2.容器环境初始化 3.进入Pod生命周期内(Pod开始创建) 4.Pod只要创建,就会自动生成一个pause容 ...
- Excel中制作目录的3种方法,你了解几种?
点赞再看,养成习惯:言之无文,行而不远. 微信搜索[亦心Excel]关注这个不一样的自媒体人. 本文 GitHub https://github.com/hugogoos/Excel 已收录,包含Ex ...
- C# 泛型对象和DataTable之间的相互转换
应用场景 实际开发场景下会经常出现DataTable和List对象需要相互转换的时候,通过方法提取避免重复造轮子 List转换成DataTable 基本思路: 向DataTable里面添加新的数据内容 ...
- 合合信息推出国央企智能文档处理解决方案,AI赋能信创国产化
信息时代,数字化转型已成为推动经济高质量发展的关键力量.国央企是国民经济的重要支柱,其数字化转型进程关乎着自身与产业链上下游企业的共同发展.文档的智能化处理可有效提升信息流转的效率.促进知识的沉淀与传 ...
- Angular 18+ 高级教程 – Component 组件 の 生命周期钩子 (Lifecycle Hooks)
前言 之前在 Component 组件 の Angular Component vs Custom Elements 文章中,我们有学习过几个基础的 Lifecycle Hooks. 比如 OnCha ...
- Java读取寄存器数据的方法
在Java中直接读取硬件寄存器(如CPU寄存器.I/O端口等)通常不是一个直接的任务,因为Java设计之初就是为了跨平台的安全性和易用性,它并不直接提供访问底层硬件的API.不过,在嵌入式系统.工业控 ...
- Libevent学习-源码下载和交叉编译,示例代码运行
1. 官网 2. 交叉编译 我的当前环境 mips平台交叉编译说明 先解压下载后的libevent源码压缩包然后cd进入解压后的文件夹libevent-2.1.11-stable: <1. ./ ...
- 我是如何开发一款支持IDEA、PyCharm、Android Sutdio 等JB全家桶的摸鱼插件的
公众号「古时的风筝」,专注于后端技术,尤其是 Java 及周边生态. 个人博客:www.moonkite.cn 大家好,我是风筝 前些天做了一款支持 Jetbrains 大部分 IDE 的摸鱼插件- ...
- python08_05day
#!/usr/bin/python# -*- coding: UTF-8 -*-from _ast import Param #查询数据库'''import MySQLdb conn = MySQLd ...
- 2021 IT运维巡展北京站圆满落幕,北京智和信通荣获IT运维样板工程
10月21日,以"数智转型 运维赋能"为主题的"2021(第十二届)IT运维巡展北京站"圆满落幕.会上行业专家.企业代表以及用户代表等共聚一堂,探讨数智时代下I ...

