\(\mathscr A\sim\)「OurOJ #47030」_

  Link & Submission & Tags:「A.DP-计数 DP」「A.数学-Stirling 数/反演」「B.Tricks」

  我们习惯于用组合数拆形如 \(l^k\) 的贡献,可惜 \(\mathcal O(nk^2)\) 的复杂度不被允许。我们需要找到更优秀的贡献拆分方法。

  关于幂,可以想到 Stirling 反演。考虑

\[l^k=\sum_{i=0}^k{k\brace i}l^{\underline i},
\]

其中 \(l^{\underline i}\) 看上去并不好维护,但是它有一个很简单的组合意义:从走过的 \(l\) 条边里有序地选出 \(i\) 条的方案数。除一个 \(i!\),那就是 \(\binom{l}{i}\),即无序地选出 \(i\) 条边的方案数。我们对这个计数问题暴力 DP,令 \(f(u,i)\) 表示从 \(1\) 走到 \(u\),已经在路径上选了 \(i\) 条边的方案数。\(\mathcal O(nk)\) 转移就行。

\(\mathscr B\sim\)「OurOJ #47031」__

  Link & Submission & Tag:「A.数据结构-树套树」

  “至少出现一次”,可以尝试直接不重不漏地进行加法贡献。那么当 \(u\) 的颜色变为 \(c\) 时,所有 \(u\) 的祖先中,子树内以前没有 \(c\) 颜色的结点都会受 \(u\) 贡献;当 \(u\) 的颜色从 \(c\) 改变时亦有类似讨论。用 set 维护一下每种颜色出现的 DFN,可以倍增求出最高的满足要求的 \(u\) 的祖先 \(v\)。

  然后呢?BIT 套线段树差分维护“\(u\) 到 \(v\) 的数量上每个点答案的 \(c\) 位置 \(\pm1\)”,\(\mathcal O((n+q)\log^2n)\),不卡常。

\(\mathscr C\sim\)「OurOJ #47031」___ *

  Link & Submission & Tags:「A.DP-状压/插头 DP」「C.性质/结论」

  条件的转化很关键,不要一味按照题目描述的顺序思考,例如本题,可以想想,如果先把所有权值随机出来,我们能得到多少种点分树?

  ——只有唯一一棵!每次分治区域内的最小值位置需保证唯一,这个点就是当前分治中心,依此递归构造,一种点权方案要不非法,要不只能由一种点分树生成。

  进一步,怎样才能保证最小值位置唯一?——对于任意两个权值相同的结点,它们的树上路径中必须存在权值更小的结点。可见这是合法的充要条件。

  接下来的求解就平凡了。令 \(f(u,S)\) 表示 \(u\) 子树内,能从对应点出发,仅经过权值不小于自己的结点,走到 \(u\) 以上的权值集合为 \(S\),暴力转移可做到 \(\mathcal O(n3^k)\)。

  然后,如你所见,极其卡常。给一些我加的优化叭。

  实现层面,不要用任何辅助数组。注意贡献形式是,当 \(S\cap T=\varnothing\) 且 \(S\) 的最高 bit 不在 \(T\) 中时,\(f(u,S)\times f(v,T)\rightarrow f(u,\{x\mid x\le \operatorname{high}(S)\land(x\in S\lor x\in T)\})\)。从大到小枚举 \(S\),同步在 \(f(v)\) 上滚类似后缀和的东西即可。

  卡常技巧:

  • 指针存一下二维状态的第一维,保证瓶颈处只有一维数组访问;

  • 虽然不知道效果明不明显,也不知道科不科学:DP 的第二维不要恰好开成 \(2^k\),这样很浪费 cache line;

  •   #pragma GCC optimize("Ofast")
    #pragma GCC target("avx, avx2, mmx, sse, sse2, sse3, sse4, ssse3")

  最后,值得一提的是,\(f\) 的转移可以表示为一定条件下的集合卷积,至少可以无脑优化至 \(\mathcal O(nk^32^k)\),理论层面比较优秀,但是算出来巨大,标算没采用这种做法可以理解。另一方面,完整的贡献形式并不是位运算卷积,所以可能很难用类 FWT 的思路取得更好优化效果。

Solution Set -「OurOJ Contest #2587」浅写的更多相关文章

  1. 「NowCoder Contest 295」H. Playing games

    还是见的题太少了 「NowCoder Contest 295」H. Playing games 题意:选出尽量多的数使得异或和为$ 0$ $ Solution:$ 问题等价于选出尽量少的数使得异或和为 ...

  2. Note -「圆方树」学习笔记

    目录 圆方树的定义 圆方树的构造 实现 细节 圆方树的运用 「BZOJ 3331」压力 「洛谷 P4320」道路相遇 「APIO 2018」「洛谷 P4630」铁人两项 「CF 487E」Touris ...

  3. 「COCI2016/2017 Contest #2」Bruza

    「COCI2016/2017 Contest #2」Bruza 解题思路 : 首先对于任意时刻 \(i\) ,硬币一定移动到了深度为 \(i\) 的节点,所以第 \(i\) 时刻 Danel 一定染掉 ...

  4. Diary / Solution Set -「WC 2022」线上冬眠做噩梦

      大概只有比较有意思又不过分超出能力范围的题叭.   可是兔子的"能力范围" \(=\varnothing\) qwq. 「CF 1267G」Game Relics   任意一个 ...

  5. LOJ6003 - 「网络流 24 题」魔术球

    原题链接 Description 假设有根柱子,现要按下述规则在这根柱子中依次放入编号为的球. 每次只能在某根柱子的最上面放球. 在同一根柱子中,任何2个相邻球的编号之和为完全平方数. 试设计一个算法 ...

  6. LOJ6002 - 「网络流 24 题」最小路径覆盖

    原题链接 Description 求一个DAG的最小路径覆盖,并输出一种方案. Solution 模板题啦~ Code //「网络流 24 题」最小路径覆盖 #include <cstdio&g ...

  7. LOJ6001 - 「网络流 24 题」太空飞行计划

    原题链接 Description 有个实验和个仪器,做实验有报酬买仪器有花费.每个实验都需要一些仪器,求最大净收益(实验报酬仪器花费),并输出一组方案. Solution 实验向所需仪器连边,实验的点 ...

  8. Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流)

    Libre 6006 「网络流 24 题」试题库 / Luogu 2763 试题库问题 (网络流,最大流) Description 问题描述: 假设一个试题库中有n道试题.每道试题都标明了所属类别.同 ...

  9. loj #6122. 「网络流 24 题」航空路线问题

    #6122. 「网络流 24 题」航空路线问题 题目描述 给定一张航空图,图中顶点代表城市,边代表两个城市间的直通航线.现要求找出一条满足下述限制条件的且途经城市最多的旅行路线. 从最西端城市出发,单 ...

  10. [LOJ#2327]「清华集训 2017」福若格斯

    [LOJ#2327]「清华集训 2017」福若格斯 试题描述 小d是4xx9小游戏高手. 有一天,小d发现了一个很经典的小游戏:跳青蛙. 游戏在一个 \(5\) 个格子的棋盘上进行.在游戏的一开始,最 ...

随机推荐

  1. 每日学学Java开发规范,OOP规约(附阿里巴巴Java开发手册(终极版))

    前言 每次去不同的公司,码不同的代码,适应不同的规范,经常被老大教育规范问题,我都有点走火入魔的感觉,还是要去看看阿里巴巴Java开发规范,从中熟悉一下,纠正自己,码出高效,码出质量. 想细看的可以去 ...

  2. c语言里关于本地变量的一些规则

    关于块的定义(自己的理解):就是☞{ }这个区域里面的东西以及" {} "这个符号的本身 ·本地的变量是定义在块内的 -->>1.它可以定义在函数的块内 void sw ...

  3. Mysql数据库笔记整理

    数据库-理论基础 1.什么是数据库? 数据:描述事物的符号记录,可以是数字.文字.图形.图像.声音.语言等,数据有多种形式,它们都可以经过数字化后存入计算机. 数据库:存储数据的仓库,是长期存放在计算 ...

  4. 6.Kubernetes集群管理工具kubectl

    Kubernetes集群管理工具kubectl 概述 kubectl是Kubernetes集群的命令行工具,通过kubectl能够对集群本身进行管理,并能够在集群上进行容器化应用的安装和部署 命令格式 ...

  5. 高德地图API-搜索提示并定位到位置,卫星地图和标准地图的切换

    // _yourMap地图实例 _yourMap.plugin(["AMap.MapType"], function () { //添加地图类型切换插件 //地图类型切换 mapT ...

  6. frida 连接夜神模拟器

    adb connect 127.0.0.1:62001 adb devices adb forward tcp:27042 tcp:27042 adb forward tcp:27043 tcp:27 ...

  7. springboot 实现通用责任链模式

    1.概述 在我们平时的工作中,填写分布填写数据,比如填入商品的基本信息,所有人信息,明细信息,这种情况就可以使用责任链模式来处理. 2.代码实现 2.1商品对象 public class Produc ...

  8. uni-app 简单上手

    1.前言 uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS.Android.Web(响应式).以及各种小程序(微信/支付宝/百度/头条/QQ/钉钉/ ...

  9. 让低版本gitlab焕新 —— 如何在低版本gitlab上实现高版本API功能

    前言:本文主要记录了基于低版本gitlab(v3 api)实现in-line comment功能的过程中踩过的坑及相应的解决方案,理论上其他低版本gitlab不具备的API都可以参照此类方法进行实现( ...

  10. COS数据工作流+云函数最佳实践 - 自定义音视频转码

    01 背景 音视频作为信息传播中流量占比最大的部分在各行业的业务中都弥足重要,而不同的业务场景中对音视频的处理逻辑可能具备行业的特殊性. 公有云虽然提供大量的视频处理服务供用户选择,但依然不能做到全面 ...