Generative Adversarial Nets
1. 基本思想
两个模型:
判别器:预测从生成器生成的样本的概率
生成器:生成样本时,最大化使得判别器发生错误的概率
最后得到唯一解:使得生成器生成的样本输入到判别器中,得到的概率全是1/2. // 伪装者无法被检查出来
判别器和生成器都是多层的,都可以通过反向传播的方式进行训练。
在训练期间和生成样本期间都不需要马尔科夫链、展开近似推理网络。
背景:
反向传播 / Dropout算法 / 分段线性单元 参考文献17/8/9看一下
由于在最大似然估计和相关策略中出现的许多难以处理的概率计算难以近似,以及由于难以在生成上下文中利用分段线性单元的优点,深度生成模型的影响较小。提出了一种新的生成模型估计方法来克服这些困难。
该框架可以生成针对多种模型的特定训练算法和优化算法。
本文中的生成模型通过一个多层感知器传递随机噪声生成样本的特殊情况,判别模型也是一个多层感知器。
可以只使用非常成功的反向传播和dropout算法来训练两个模型,并只使用正向传播从生成模型中提取样本。不需要近似推理或马尔可夫链。
相关工作
对抗网络
学习数据x的分布pg,在输入噪声变量pz(z)上定义一个先验,然后表示到数据空间的映射为G (z;θg), G是一个可微函数表示为一个带有参数θg的多层感知器。
还定义了第二个多层感知器D(x;θd)输出一个标量。D(x)表示x来自数据而不是pg的概率。我们训练D,使其最大限度地表示G的训练示例和样本分配正确标签的概率。我们同时训练G,使log(1 D(G(z))最小化。换句话说,D和G用值函数V (G;D)


不想写了。
Generative Adversarial Nets的更多相关文章
- 论文笔记之:Conditional Generative Adversarial Nets
Conditional Generative Adversarial Nets arXiv 2014 本文是 GANs 的拓展,在产生 和 判别时,考虑到额外的条件 y,以进行更加"激烈 ...
- (转)Deep Learning Research Review Week 1: Generative Adversarial Nets
Adit Deshpande CS Undergrad at UCLA ('19) Blog About Resume Deep Learning Research Review Week 1: Ge ...
- 论文笔记之:Generative Adversarial Nets
Generative Adversarial Nets NIPS 2014 摘要:本文通过对抗过程,提出了一种新的框架来预测产生式模型,我们同时训练两个模型:一个产生式模型 G,该模型可以抓住数据分 ...
- Generative Adversarial Nets[BEGAN]
本文来自<BEGAN: Boundary Equilibrium Generative Adversarial Networks>,时间线为2017年3月.是google的工作. 作者提出 ...
- Generative Adversarial Nets[content]
0. Introduction 基于纳什平衡,零和游戏,最大最小策略等角度来作为GAN的引言 1. GAN GAN开山之作 图1.1 GAN的判别器和生成器的结构图及loss 2. Condition ...
- Generative Adversarial Nets[CycleGAN]
本文来自<Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks>,时间线为2017 ...
- Generative Adversarial Nets[CAAE]
本文来自<Age Progression/Regression by Conditional Adversarial Autoencoder>,时间线为2017年2月. 该文很有意思,是如 ...
- Generative Adversarial Nets[Wasserstein GAN]
本文来自<Wasserstein GAN>,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题. 1 引言 本文主要思考的是 ...
- Generative Adversarial Nets[Pre-WGAN]
本文来自<towards principled methods for training generative adversarial networks>,时间线为2017年1月,第一作者 ...
- Generative Adversarial Nets[pix2pix]
本文来自<Image-to-Image Translation with Conditional Adversarial Networks>,是Phillip Isola与朱俊彦等人的作品 ...
随机推荐
- [原]获取openstack-pike安装包
linux version: CentOS 7.5.1804 #进入仓库配置目录 cd /etc/yum.repo.d/ #批量重命名所有文件 for files in `ls *`; do mv $ ...
- (二)区块链的共识算法:PoS 及其 例子 代码 实现
作者:林冠宏 / 指尖下的幽灵 掘金:https://juejin.im/user/587f0dfe128fe100570ce2d8 博客:http://www.cnblogs.com/linguan ...
- centos7上修改lv逻辑卷的大小
author:headsen chen date: 2019-03-18 15:24:22 1,查看 [root@localhost mnt]# df -h Filesystem Size Used ...
- C#队列Queue实现一个简单的电商网站秒杀程序
电商的秒杀和抢购,对程序员来说,都不是一个陌生的东西.然而,从技术的角度来说,这对于Web系统是一个巨大的考验.当一个Web系统,在一秒钟内收到数以万计甚至更多请求时,系统的优化和稳定至关重要. 我们 ...
- Nestjs 序列化(Serialization)
文档 在发送实际响应之前,Serializers为数据操作提供了干净的抽象层.例如,应始终从最终响应中排除敏感数据(如用户密码) λ yarn add class-transformer cats.e ...
- [ACM-ICPC 2018 徐州赛区网络预赛][D. Easy Math]
题目链接:Easy Math 题目大意:给定\(n(1\leqslant n\leqslant 10^{12}),m(1\leqslant m\leqslant 2*10^{9})\),求\(\sum ...
- Python学习之旅(二十)
Python基础知识(19):面向对象高级编程(Ⅱ) 定制类 形如“__xx__”的变量或函数在Python中是有特殊用途的 1.__str__ 让打印出来的结果更好看 __str__:面向用户:__ ...
- EasyUI Tree节点拖动到指定容器
效果图:将tree节点拖动到指定的DIV中,结果显示节点的id和text 代码: <!DOCTYPE html> <html> <head> <meta ch ...
- Linux 中如何用源代码安装软件,以及如何卸载它
https://www.linuxidc.com/Linux/2017-12/149839.htm http://www.openssh.com/ http://www.openssh.com/por ...
- tensorboard使用过程错误记录
首先代码如下: def word_vis(self,file,txtname):#生成的模型存放的地址:word_vismodel'+file为新建的文件夹名 txtname是通过word2vec生成 ...