(转发)storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么?
2.Storm控制节点上面运行一个后台程序被称之为什么?
3.Supervisor的作用是什么?
4.Topology与Worker之间的关系是什么?
5.Nimbus和Supervisor之间的所有协调工作有master来完成,还是Zookeeper集群完成?
6.storm稳定的原因是什么?
7.如何运行Topology?
strom jar all-your-code.jar backtype.storm.MyTopology arg1 arg2
8.spout是什么?
9.bolt是什么?
10.Topology由两部分组成?
11.stream grouping有几种?
Storm对于实时计算的的意义相当于Hadoop对于批处理的意义。Hadoop为我们提供了Map和Reduce原语,使我们对数据进行批处理变的非常的简单和优美。同样,Storm也对数据的实时计算提供了简单Spout和Bolt原语。
Storm适用的场景:
1、流数据处理:Storm可以用来用来处理源源不断的消息,并将处理之后的结果保存到持久化介质中。
2、分布式RPC:由于Storm的处理组件都是分布式的,而且处理延迟都极低,所以可以Storm可以做为一个通用的分布式RPC框架来使用。
1、准备工作
2、一个Storm集群的基本组件


3、Topologies
- strom jar all-your-code.jar backtype.storm.MyTopology arg1 arg2
复制代码
-based语言提交的最简单的方法, 看一下文章: 在生产集群上运行topology去看看怎么启动以及停止topologies。
4、Stream
5、数据模型(Data Model)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
|
publicclassDoubleAndTripleBoltimplementsIRichBolt { privateOutputCollectorBase _collector; @Override publicvoidprepare(Map conf, TopologyContext context, OutputCollectorBase collector) { _collector = collector; } @Override publicvoidexecute(Tuple input) { intval = input.getInteger( 0 ); _collector.emit(input,newValues(val* 2 , val* 3 )); _collector.ack(input); } @Override publicvoidcleanup() { } @Override publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(newFields( "double" , "triple" )); } } |
1
2
3
4
5
6
|
TopologyBuilder builder =newTopologyBuilder(); builder.setSpout( 1 ,newTestWordSpout(), 10 ); builder.setBolt( 2 ,newExclamationBolt(), 3 ) .shuffleGrouping( 1 ); builder.setBolt( 3 ,newExclamationBolt(), 2 ) .shuffleGrouping( 2 ); |
1
2
3
|
builder.setBolt( 3 ,newExclamationBolt(), 5 ) .shuffleGrouping( 1 ) .shuffleGrouping( 2 ); |
让我们深入地看一下这个topology里面的spout和bolt是怎么实现的。Spout负责发射新的tuple到这个topology里面来。 TestWordSpout从["nathan", "mike", "jackson", "golda", "bertels"]里面随机选择一个单词发射出来。TestWordSpout里面的nextTuple()方法是这样定义的:
1
2
3
4
5
6
7
8
|
publicvoidnextTuple() { Utils.sleep( 100 ); finalString[] words =newString[] { "nathan" , "mike" , "jackson" , "golda" , "bertels" }; finalRandom rand =newRandom(); finalString word = words[rand.nextInt(words.length)]; _collector.emit(newValues(word)); } |
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
|
publicstaticclassExclamationBoltimplementsIRichBolt { OutputCollector _collector; publicvoidprepare(Map conf, TopologyContext context, OutputCollector collector) { _collector = collector; } publicvoidexecute(Tuple tuple) { _collector.emit(tuple,newValues(tuple.getString( 0 ) + "!!!" )); _collector.ack(tuple); } publicvoidcleanup() { } publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(newFields( "word" )); } } |
让我们看看怎么以local mode运行ExclamationToplogy。
1
2
3
4
5
6
7
8
9
|
Config conf =newConfig(); conf.setDebug( true ); conf.setNumWorkers( 2 ); LocalCluster cluster =newLocalCluster(); cluster.submitTopology( "test" , conf, builder.createTopology()); Utils.sleep( 10000 ); cluster.killTopology( "test" ); cluster.shutdown(); |
- TOPOLOGY_WORKERS(setNumWorkers) 定义你希望集群分配多少个工作进程给你来执行这个topology. topology里面的每个组件会被需要线程来执行。每个组件到底用多少个线程是通过setBolt和setSpout来指定的。这些线程都运行在工作进 程里面. 每一个工作进程包含一些节点的一些工作线程。比如, 如果你指定300个线程,60个进程, 那么每个工作进程里面要执行6个线程, 而这6个线程可能属于不同的组件(Spout, Bolt)。你可以通过调整每个组件的并行度以及这些线程所在的进程数量来调整topology的性能。
- TOPOLOGY_DEBUG(setDebug), 当它被设置成true的话, storm会记录下每个组件所发射的每条消息。这在本地环境调试topology很有用, 但是在线上这么做的话会影响性能的。
Worker processes(进程)
Executors (threads)(线程)
Tasks




7、流分组策略(Stream grouping)
1
2
3
4
5
6
7
|
TopologyBuilder builder =newTopologyBuilder(); builder.setSpout( 1 ,newRandomSentenceSpout(), 5 ); builder.setBolt( 2 ,newSplitSentence(), 8 ) .shuffleGrouping( 1 ); builder.setBolt( 3 ,newWordCount(), 12 ) .fieldsGrouping( 2 ,newFields( "word" )); |
- 最简单的grouping是shuffle grouping, 它随机发给任何一个task。上面例子里面RandomSentenceSpout和SplitSentence之间用的就是shuffle grouping, shuffle grouping对各个task的tuple分配的比较均匀。
- 一种更有趣的grouping是fields grouping, SplitSentence和WordCount之间使用的就是fields grouping, 这种grouping机制保证相同field值的tuple会去同一个task, 这对于WordCount来说非常关键,如果同一个单词不去同一个task, 那么统计出来的单词次数就不对了。
l ShuffleGrouping:随机选择一个Task来发送。
l FiledGrouping:根据Tuple中Fields来做一致性hash,相同hash值的Tuple被发送到相同的Task。
l AllGrouping:广播发送,将每一个Tuple发送到所有的Task。
l GlobalGrouping:所有的Tuple会被发送到某个Bolt中的id最小的那个Task。
l NoneGrouping:不关心Tuple发送给哪个Task来处理,等价于ShuffleGrouping。
l DirectGrouping:直接将Tuple发送到指定的Task来处理。
8、使用别的语言来定义Bolt
1
2
3
4
5
6
7
8
9
|
publicstaticclassSplitSentenceextendsShellBoltimplementsIRichBolt { publicSplitSentence() { super ( "python" , "splitsentence.py" ); } publicvoiddeclareOutputFields(OutputFieldsDeclarer declarer) { declarer.declare(newFields( "word" )); } } |
SplitSentence继承自ShellBolt并且声明这个Bolt用python来运行,并且参数是: splitsentence.py。下面是splitsentence.py的定义:
1
2
3
4
5
6
7
8
9
|
importstorm classSplitSentenceBolt(storm.BasicBolt): defprocess(self, tup): words=tup.values[ 0 ].split( " " ) forwordinwords: storm.emit([word]) SplitSentenceBolt().run() |
9、可靠的消息处理

原文地址:http://www.aboutyun.com/thread-7394-1-1.html
(转发)storm 入门原理介绍的更多相关文章
- storm 入门原理介绍
1.hadoop有master与slave,Storm与之对应的节点是什么? 2.Storm控制节点上面运行一个后台程序被称之为什么? 3.Supervisor的作用是什么? 4.Topology与W ...
- storm 入门原理介绍_AboutYUN
转自:http://www.aboutyun.com/thread-7394-1-1.html 了解Storm:http://www.aboutyun.com/thread-9547-1-2.html ...
- storm入门原理介绍
转自:http://www.cnblogs.com/wuxiang/p/5629138.html 1.hadoop有master与slave,Storm与之对应的节点是什么?2.Storm控制节点上面 ...
- storm原理介绍
目录 storm原理介绍 一.原理介绍 二.配置 三.并行度 (一)storm拓扑的并行度可以从以下4个维度进行设置: (二)并行度的设置方法 (三)示例 四.分组 五.可靠性 (一)spout (二 ...
- 《Storm入门》中文版
本文翻译自<Getting Started With Storm>译者:吴京润 编辑:郭蕾 方腾飞 本书的译文仅限于学习和研究之用,没有原作者和译者的授权不能用于商业用途. 译者序 ...
- Traceroute原理介绍
一.路由追踪 路由跟踪,就是获取从主机A到达目标主机B这个过程中所有需要经过的路由设备的转发接口IP. 二.ICMP协议 Internet控制报文协议(internet control message ...
- 高性能消息队列 CKafka 核心原理介绍(上)
欢迎大家前往腾讯云技术社区,获取更多腾讯海量技术实践干货哦~ 作者:闫燕飞 1.背景 Ckafka是基础架构部开发的高性能.高可用消息中间件,其主要用于消息传输.网站活动追踪.运营监控.日志聚合.流式 ...
- Kylin系列之二:原理介绍
Kylin系列之二:原理介绍 2018年4月15日 15:52 因何而生 Kylin和hive的区别 1. hive主要是离线分析平台,适用于已经有成熟的报表体系,每天只要定时运行即可. 2. Kyl ...
- Apache Storm内部原理分析
转自:http://shiyanjun.cn/archives/1472.html 本文算是个人对Storm应用和学习的一个总结,由于不太懂Clojure语言,所以无法更多地从源码分析,但是参考了官网 ...
随机推荐
- GDAL源码编译(32位)
GDAL源码编译(32位) 前言 GDAL:GDAL/OGR 是一个地理空间数据的格式转换及处理工具.官网:https://www.gdal.org/ swig:SWIG是个帮助使用C或者C++编写的 ...
- flask-session 在redis中存储session
依赖: Flask Flask-Session redis import os from flask import Flask, session, request from flask_session ...
- mybatis 使用IN 关键字
mybatis 使用IN 关键字,查询条件如果有多个,拼接成字符串,当做参数传入的时候可能会只查询一条数据,那是因为mybits 将它当做一个字符串来处理了,这时候就需要使用<foreach&g ...
- 升级nginx 和nchan
#下载sudo wget http://nginx.org/download/nginx-1.14.0.tar.gzsudo wget https://github.com/slact/nchan/a ...
- WebView性能、体验分析与优化
育新 徐宏 嘉洁 ·2017-06-09 20:03 在App开发中,内嵌WebView始终占有着一席之地.它能以较低的成本实现Android.iOS和Web的复用,也可以冠冕堂皇的突破苹果对热更新的 ...
- java中有关初始化的问题
在类的内部,变量定义的先后顺序决定了初始化顺序,即使变量定义分散在方法定义之外,它们依旧会在任何方法(包括构造器)被调用之前得到初始化 其中初始化的顺序先是静态对象,其后是非静态对象 例如: clas ...
- MacOs 安装cordova报无权访问题解决方案
在MacOS安装cordova后,执行cordova -v报错: Error: EACCES: permission denied, open '/Users/jianuonuo/.config/co ...
- django 问题总结
1.更新了pip之后还提示更新 // 卸载 pip uninstall pip // 重新安装 easy_install pip pip -V 2.时间比当前时间少8小时问题 // 设置setting ...
- webView 获取内容高度不准确的原因是因为你设置了某个属性
不管是UIWebView 还是 WKWebView 这里 获取js属性 获取高度的方法 我就不一一细说了 ,本文最主要不说这个 ,网上有太多的方法 我最不摘几个 CGFloat webViewHeig ...
- CodeForces - 660D:Number of Parallelograms (问N个点多少个平行四边形)
pro:给定N个点,问多少个点组成了平行四边形.保证没有三点共线. sol:由于没有三点贡献,所以我们枚举对角线,对角线的中点重合的就是平行四边形.如果没说保证三点不共线就不能这么做,因为有可能4个点 ...