在MySQL中,我们可以将NOT EXISTS语句转换为LEFT JOIN语句来进行优化,哪为什么会有性能提升呢?

使用NOT EXISTS方式SQL为:

SELECT count(1)
FROM t_monitor m
WHERE NOT exists
(SELECT 1
FROM t_alarm_realtime AS a
WHERE a.resource_id=m.resource_id
AND a.resource_type=m.resource_type
AND a.monitor_name=m.monitor_name)

而使用LEFT JOIN方式SQL为:

SELECT count(1)
FROM t_monitor m
LEFT JOIN t_alarm_realtime AS a
ON a.resource_id=m.resource_id
AND a.resource_type=m.resource_type
AND a.monitor_name=m.monitor_name
WHERE a.resource_id is NULL

从查询效果来看,NOT EXISTS 方式耗时29.38秒,而LEFT JOIN方式耗时1.20秒,性能提升25倍左右。

查看NOT EXISTS方式的执行计划:

*************************** 1. row ***************************
id: 1
select_type: PRIMARY
table: m
partitions: NULL
type: index
possible_keys: NULL
key: idx_id_name_type
key_len: 119
ref: NULL
rows: 578436
filtered: 100.00
Extra: Using where; Using index
*************************** 2. row ***************************
id: 2
select_type: DEPENDENT SUBQUERY
table: a
partitions: NULL
type: eq_ref
possible_keys: idx_id_name_type
key: idx_id_name_type
key_len: 119
ref: cmdb.m.resource_id,cmdb.m.monitor_name,cmdb.m.resource_type
rows: 1
filtered: 100.00
Extra: Using index

查看LEFT JOIN方式的执行计划:

*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: m
partitions: NULL
type: index
possible_keys: NULL
key: idx_id_name_type
key_len: 119
ref: NULL
rows: 578436
filtered: 100.00
Extra: Using index
*************************** 2. row ***************************
id: 1
select_type: SIMPLE
table: a
partitions: NULL
type: eq_ref
possible_keys: idx_id_name_type
key: idx_id_name_type
key_len: 119
ref: cmdb.m.resource_id,cmdb.m.monitor_name,cmdb.m.resource_type
rows: 1
filtered: 100.00
Extra: Using where; Not exists; Using index

使用SQL PROFILE查看NOT EXISTS 执行过程:

+--------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+
| Status | Duration | CPU_user | CPU_system | Context_voluntary | Context_involuntary | Block_ops_in | Block_ops_out |
+--------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000022 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000022 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000029 | 0.001000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000022 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000026 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000025 | 0.000000 | 0.000999 | 0 | 0 | 0 | 0 |
| Sending data | 0.000031 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000022 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000023 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 0.000033 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| end | 0.000024 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| query end | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| closing tables | 0.000027 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| freeing items | 0.000039 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| logging slow query | 0.000059 | 0.000000 | 0.000000 | 0 | 0 | 0 | 16 |
| cleaning up | 0.000033 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
+--------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+

使用SQL PROFILE查看LEFT JOIN 执行过程:

+----------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+
| Status | Duration | CPU_user | CPU_system | Context_voluntary | Context_involuntary | Block_ops_in | Block_ops_out |
+----------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+
| starting | 0.000162 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| checking permissions | 0.000025 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| checking permissions | 0.000025 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Opening tables | 0.000033 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| init | 0.000049 | 0.001000 | 0.000000 | 0 | 0 | 0 | 0 |
| System lock | 0.000030 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| optimizing | 0.000033 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| statistics | 0.000050 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| preparing | 0.000037 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| executing | 0.000025 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| Sending data | 1.200899 | 1.547764 | 0.124981 | 7460 | 116 | 0 | 8608 |
| end | 0.000103 | 0.000000 | 0.000000 | 2 | 0 | 0 | 0 |
| query end | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| closing tables | 0.000028 | 0.000000 | 0.000000 | 0 | 0 | 0 | 0 |
| freeing items | 0.000039 | 0.000000 | 0.000000 | 2 | 0 | 0 | 8 |
| logging slow query | 0.000052 | 0.000000 | 0.000000 | 0 | 0 | 0 | 24 |
| cleaning up | 0.000030 | 0.000000 | 0.000000 | 1 | 0 | 0 | 0 |
+----------------------+----------+----------+------------+-------------------+---------------------+--------------+---------------+

两种执行方式对比:

1、从执行计划来看,两个表都使用了索引,区别在于NOT EXISTS使用“DEPENDENT SUBQUERY”方式,而LEFT JOIN使用普通表关联的方式

2、从执行过程来看,LEFT JOIN方式主要消耗Sending data的上,在NOT EXISTS方式主要消耗在"executing"和“Sending data”两项上,受限于PROFILE只能记录100行结果,因此超过57万个"executing"和“Sending data”的组合项没有显示,虽然每次"executing"和“Sending data”的组合项消耗时间较少(约50毫秒),但由于执行次数较高,导致最终执行时间较长(50μs*578436=28921800us=28.92s)

如何在NOT EXISTS和LEFT JOIN中选择:

1、当外层数据较少时,子查询循环次数较少,使用NOT EXISTS并不会导致严重的性能问题,推荐使用NOT EXISTS方式。

2、当外层数据较大时,子查询消耗随外层数据量递增,查询性能较差,推荐使用LEFT JOIN方式

总结:

按照存在即合理是客观唯心主义的理论,NOT EXISTS以更直观地方式实现业务需求,在SQL复杂度上要远低于LEFT JOIN,且在生产执行计划时,NOT EXISTS方式相对更稳定些,LEFT JOIN可能会随统计信息变化而生产不同的执行计划。

MySQL优化--NOT EXISTS和LEFT JOIN方式差异的更多相关文章

  1. 0104探究MySQL优化器对索引和JOIN顺序的选择

    转自http://www.jb51.net/article/67007.htm,感谢博主 本文通过一个案例来看看MySQL优化器如何选择索引和JOIN顺序.表结构和数据准备参考本文最后部分" ...

  2. 性能优化之mysql优化——慢查日志的开启方式和存储

    -- MySQL优化 -- mysql 慢查日志的开启方式和存储 -- 1) 查看mysql是否开启慢查询日志 SHOW VARIABLES LIKE 'slow_query_log'; -- 2) ...

  3. sql优化 表连接join方式

        sql优化核心 是数据库中 解析器+优化器的工作,我觉得主要有以下几个大方面:1>扫表的方法(索引非索引.主键非主键.书签查.索引下推)2>关联表的方法(三种),关键是内存如何利用 ...

  4. 如何干涉MySQL优化器使用hash join

    GreatSQL社区原创内容未经授权不得随意使用,转载请联系小编并注明来源. GreatSQL是MySQL的国产分支版本,使用上与MySQL一致. 前言 实验 总结 前言 数据库的优化器相当于人类的大 ...

  5. SQL优化--使用 EXISTS 代替 IN 和 inner join来选择正确的执行计划

    在使用Exists时,如果能正确使用,有时会提高查询速度: 1,使用Exists代替inner join 2,使用Exists代替 in 1,使用Exists代替inner join例子: 在一般写s ...

  6. MySQL优化—工欲善其事,必先利其器之EXPLAIN(转)

    最近慢慢接触MySQL,了解如何优化它也迫在眉睫了,话说工欲善其事,必先利其器.最近我就打算了解下几个优化MySQL中经常用到的工具.今天就简单介绍下EXPLAIN. 内容导航 id select_t ...

  7. MySQL优化—工欲善其事,必先利其器之EXPLAIN

    最近慢慢接触MySQL,了解如何优化它也迫在眉睫了,话说工欲善其事,必先利其器.最近我就打算了解下几个优化MySQL中经常用到的工具.今天就简单介绍下EXPLAIN. 内容导航 id select_t ...

  8. mysql优化sql语句的方法

    1.对查询进行优化,应尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引. 2.应尽量避免在 where 子句中使用!=或<>操作符,否则将引擎放弃使用索 ...

  9. 项目中常用的19条MySQL优化

    声明一下:下面的优化方案都是基于 " Mysql-索引-BTree类型 " 的 一.EXPLAIN 做MySQL优化,我们要善用 EXPLAIN 查看SQL执行计划. 下面来个简单 ...

随机推荐

  1. Python——查看安装位置和安装的库

    查看Python 安装位置和安装的库 步骤一:  1. Start 一个command prompt  2. 找到电脑中已经安装的Python 位置: where python 1 打开路径, cd ...

  2. OS模块的介绍

    os,语义为操作系统,模块提供了访问多个操作系统服务的功能,可以处理文件和目录这些我们日常手动需要做的操作.os和它的子模块os.path还包括一些用于检查.构造.删除目录和文件的函数,以及一些处理路 ...

  3. dto vo

    不过符合规矩的做法是DTO里可以放各种List<VO>,而VO和entity就是一一对应的关系,vo里不能放entity,entity里也不能放vo,vo和entity只存放和数据库完全相 ...

  4. 合并数组,改变原数组apply与不改变原数组

    一看见合并数组,可能第一反应就是concat,concat确实具有我们想要的行为,但它实际上并不附加到现有数组,而是创建并返回一个新数组. 同样你也许会想到ES6的扩展运算符...         但 ...

  5. java学习笔记(十一):重写(Override)与重载(Overload)

    重写(Override) 重写是子类对父类的允许访问的方法的进行重新编写, 但是返回值和形参都不能改变. 实例 class Animal{ public void run(){ System.out. ...

  6. 根据文件夹更改样本文件名小程序.py

    #按照文件名设置标签并将其插入文件名中import osimport shutil#获取目标文件夹的路径a= r'C:\Users\yy\Desktop\tianchi大赛\guangdong_rou ...

  7. 20175314 《Java程序设计》第六周学习总结

    20175314 <Java程序设计>第六周学习总结 教材学习内容总结 第七章:内部类与异常类 内部类:内部类就是在一个类中再定义一个类,这个在类中定义的类就叫做内部类,而包含内部类的类叫 ...

  8. 利用DWORD SHOOT实现堆溢出的利用(先知收录)

    原文链接:https://xz.aliyun.com/t/4009 1.0 DWORD SHOOT是什么捏? DWORD SHOOT指能够向内存任意位置写入任意数据,1个WORD=4个bytes,即可 ...

  9. 【计算机网络】TCP的流量控制和拥塞控制

    TCP的流量控制 1. 利用滑动窗口实现流量控制 如果发送方把数据发送得过快,接收方可能会来不及接收,这就会造成数据的丢失.所谓流量控制就是让发送方的发送速率不要太快,要让接收方来得及接收. 利用滑动 ...

  10. java基础 ----- 选择结构

    ---------    流程控制 ------     流程图 ------   基本的  if  选择结构 import java.util.Scanner; public class GetPr ...