Map-reduce是一种数据处理范例,用于将大量数据压缩为有用的聚合结果。 对于map-reduce操作,MongoDB提供了mapReduce数据库命令。

一个简单的map-reduce示例如下:

在此map-reduce操作中,MongoDB将映射(map)操作应用于每个输入文档(即集合中与查询条件匹配的文档)。map函数提交(emit)一个键值对(key-value)。对于具有多个值的key钥,MongoDB应用reduce操作,该操作用于聚合数据。然后MongoDB将结果存储在一个集合中。reduce函数的输出还可以选择通过finalize函数以进一步压缩或处理聚合的结果。

MongoDB中的所有map-reduce函数都是JavaScript,并在mongod进程中运行。 Map-reduce操作将单个集合的文档作为输入,并可在开始映射阶段之前执行任意排序和限制。 mapReduce可以将map-reduce操作的结果作为文档返回,也可以将结果写入集合。 输入和输出集合可以分片。

对于大多数聚合操作,聚合管道( Aggregation Pipeline)[https://docs.mongodb.com/manual/core/aggregation-pipeline/]提供更好的性能和更一致的接口。 但是,map-reduce操作提供了一些目前在聚合管道中不可用的灵活性。

Map-Reduce JavaScript 函数

在MongoDB中,map-reduce操作使用自定义JavaScript函数将值(value)映射或关联到键(key)。 如果某个键(key)有对应多个值(value),则该操作应该将键的值reduces单个对象

使用自定义JavaScript函数可以灵活地进行map-reduce操作。 例如,在处理文档时,map函数可以创建多个键和值映射或不进行映射。 Map-reduce操作还可以使用自定义JavaScript函数对映射的结果进行最终修改,并在映射操作的最后阶段进行reduce操作,执行其他计算。

Map-Reduce 行为

在MongoDB中,map-reduce操作可以将结果写入集合或返回结果内联。 如果将map-reduce输出写入集合,则可以在合并替换,合并或减少新结果与先前结果的同一输入集合上执行后续map-reduce操作。 有关详细信息和示例,请参阅mapReducePerform Incremental(执行增量) Map-Reduce

当返回map-reduce操作的内联结果时,结果文档必须在BSON文档大小限制内,该限制当前为16兆字节。 有关map-reduce操作的限制和限制的其他信息,请参阅mapReduce参考页面。

MongoDB支持分片集合上的map-reduce操作。 Map-reduce操作还可以将结果输出到分片集合。 请参见Map-Reduce and Sharded Collections

Views(视图)不支持map-reduce操作。

一个简单的测试

MongoDB地理空间数据存储及检索

上面链接是之前曾经做过一个全国县级行政边界矢量入库到MongoDB的记录,这里用它来测试一下。

简单的测试一下全国每个省都有多少个县

db.getCollection('xzbj').mapReduce(
function() { emit(this.properties.sheng,1);},
function(key,values){return Array.sum(values);},
{
query:{},
out:"xian_count"
}
)

这里将结果输出到了xian_count这个新的集合中,可以打开这个集合查看结果。

上面的query也可以没有,就是默认集合内全部文档。

如果不想把结果输出到一个集合,直接显示结果,则可以使用out: { inline: 1 }

计算一下湖南省每个地级市有多少个县

使用下面语句

db.getCollection('xzbj').mapReduce(
function() { emit(this.properties.di,1);},
function(key,values){return Array.sum(values);},
{
query:{ 'properties.sheng':'湖南'},
out: { inline: 1 }
}
)

得到输出如下(这里如果是针对全国的数据是有问题的,因为之前没有正确处理港澳台数据):

{
"results" : [
{
"_id" : "娄底市",
"value" : 5.0
},
{
"_id" : "岳阳市",
"value" : 7.0
},
{
"_id" : "常德市",
"value" : 9.0
},
{
"_id" : "张家界市",
"value" : 3.0
},
{
"_id" : "怀化市",
"value" : 12.0
},
{
"_id" : "株洲市",
"value" : 6.0
},
{
"_id" : "永州市",
"value" : 10.0
},
{
"_id" : "湘潭市",
"value" : 4.0
},
{
"_id" : "湘西土家族苗族自治州",
"value" : 8.0
},
{
"_id" : "益阳市",
"value" : 6.0
},
{
"_id" : "衡阳市",
"value" : 8.0
},
{
"_id" : "邵阳市",
"value" : 11.0
},
{
"_id" : "郴州市",
"value" : 11.0
},
{
"_id" : "长沙市",
"value" : 5.0
}
],
"timeMillis" : 19.0,
"counts" : {
"input" : 105,
"emit" : 105,
"reduce" : 14,
"output" : 14
},
"ok" : 1.0,
"_o" : {
"results" : [
{
"_id" : "娄底市",
"value" : 5.0
},
{
"_id" : "岳阳市",
"value" : 7.0
},
{
"_id" : "常德市",
"value" : 9.0
},
{
"_id" : "张家界市",
"value" : 3.0
},
{
"_id" : "怀化市",
"value" : 12.0
},
{
"_id" : "株洲市",
"value" : 6.0
},
{
"_id" : "永州市",
"value" : 10.0
},
{
"_id" : "湘潭市",
"value" : 4.0
},
{
"_id" : "湘西土家族苗族自治州",
"value" : 8.0
},
{
"_id" : "益阳市",
"value" : 6.0
},
{
"_id" : "衡阳市",
"value" : 8.0
},
{
"_id" : "邵阳市",
"value" : 11.0
},
{
"_id" : "郴州市",
"value" : 11.0
},
{
"_id" : "长沙市",
"value" : 5.0
}
],
"timeMillis" : 19,
"counts" : {
"input" : 105,
"emit" : 105,
"reduce" : 14,
"output" : 14
},
"ok" : 1.0
},
"_keys" : [
"results",
"timeMillis",
"counts",
"ok"
],
"_db" : {
"_mongo" : {
"slaveOk" : true,
"host" : "127.0.0.1:27017",
"defaultDB" : "test",
"_readMode" : "commands"
},
"_name" : "us"
}
}

MongoDB下Map-Reduce使用简单翻译及示例的更多相关文章

  1. map/reduce类简单介绍

    在Hadoop的mapper类中,有4个主要的函数,分别是:setup,clearup,map,run.代码如下: protected void setup(Context context) thro ...

  2. 入门大数据---Map/Reduce,Yarn是什么?

    简单概括:Map/Reduce是分布式离线处理的一个框架. Yarn是Map/Reduce中的一个资源管理器. 一.图形说明下Map/Reduce结构: 官方示意图: 另外还可以参考这个: 流程介绍: ...

  3. MongoDB Map Reduce(转载)

    MongoDB Map Reduce Map-Reduce是一种计算模型,简单的说就是将大批量的工作(数据)分解(MAP)执行,然后再将结果合并成最终结果(REDUCE). MongoDB提供的Map ...

  4. 记一次MongoDB Map&Reduce入门操作

    需求说明 用Map&Reduce计算几个班级中,每个班级10岁和20岁之间学生的数量: 需求分析 学生表的字段: db.students.insert({classid:1, age:14, ...

  5. ODPS 下一个map / reduce 准备

    阿里接到一个电话说练习和比赛智能二选一, 真的很伤心, 练习之前积极老龄化的权利. 要总结ODPS下一个 写map / reduce 并进行购买预测过程. 首先这里的hadoop输入输出都是表的形式, ...

  6. mongodb Map/reduce测试代码

    private void AccountInfo() { ls.Clear(); DateTime dt = DateTime.Now.Date; IMongoQuery query = Query& ...

  7. 分布式基础学习(2)分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分 布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件 系统,很 ...

  8. 分布式基础学习【二】 —— 分布式计算系统(Map/Reduce)

    二. 分布式计算(Map/Reduce) 分布式式计算,同样是一个宽泛的概念,在这里,它狭义的指代,按Google Map/Reduce框架所设计的分布式框架.在Hadoop中,分布式文件系统,很大程 ...

  9. 数据库-mongodb-聚合与map reduce

    分组统计:group() 简单聚合:aggregate() 强大统计:mapReduce() Group函数: 1.不支持集群.分片,无法分布式计算 2.需要手写聚合函数的业务逻辑 curr指当前行, ...

随机推荐

  1. Git submodule 仓库中包含另外的仓库(子仓库)

    Git submodule 仓库中包含另外的仓库(子仓库) 添加 submodule 在父仓库 git 目录下: git submodule add ssh://ip/[path]/xxx.git 注 ...

  2. Flume的四个使用案例

    一.Flume监听端口 1,在linux机器上下载telnet工具 yum search telnet yumm install telnet.x86_64 2.编写flume的配置文件,并将文件复制 ...

  3. Shell学习之Bash变量详解(二)

    Shell学习之Bash变量详解 目录 Bash变量 Bash变量注意点 用户自定义变量 环境变量 位置参数变量 预定义变量 Bash变量 用户自定义变量:在Bash中由用户定义的变量. 环境变量:这 ...

  4. 大数据技术 - MapReduce的Combiner介绍

    本章来简单介绍下 Hadoop MapReduce 中的 Combiner.Combiner 是为了聚合数据而出现的,那为什么要聚合数据呢?因为我们知道 Shuffle 过程是消耗网络IO 和 磁盘I ...

  5. 高效使用hibernate-validator校验框架

    一.前言 高效.合理的使用hibernate-validator校验框架可以提高程序的可读性,以及减少不必要的代码逻辑.接下来会介绍一下常用一些使用方式. 二.常用注解说明 限制 说明 @Null 限 ...

  6. Django 学习第三天——模板变量及模板过滤器

    一.模板路径的查找: 查找顺序:(现在哪找到就用那个) 首先在主目录的 setting.py 文件里的 TEMPLATES 中的 DIRS 里找: 其次如果 DIRS 中的 APP_DIRS : 'T ...

  7. 一种表达式语言的解析引擎JEXL简单使用

    Jexl 是一个 Expression Language 的解析引擎, 是为了方便嵌入你的系统或者程序框架的开发中, 他算是实现了 JSTL 中 EL 的延伸版本. 不过也采用了一些 Velocity ...

  8. python 多线程锁机制

    GIL(全局解释器锁) GIL并不是Python的特性,它是在实现Python解析器(CPython)时所引入的一个概念,是为了实现不同线程对共享资源访问的互斥,才引入了GIL 在Cpython解释器 ...

  9. Oracle DB

    索引 一.安装   卸载 一.安装 1.Oracle首先询问用户是否接受更新信息,一般选择不接受:Oracle安装选项,需为其配置数据库,所以此处会询问是否创建安装数据库,选择是系统类型,一般选择服务 ...

  10. codeforces723----C. Polycarp at the Radio

    //AC代码...表示很晕 #include <iostream> using namespace std; ],b[]; int main() { int n,m,cnt; cin &g ...