BZOJ 4785 [Zjoi2017]树状数组 | 二维线段树
题目链接
题解
这道题真是令人头秃 = =
可以看出题面中的九条可怜把求前缀和写成了求后缀和,然后他求的区间和却仍然是sum[r] ^ sum[l - 1],实际上求的是闭区间[l - 1, r - 1]的区间和。什么时候[l - 1, r - 1]的区间和与[l, r]的想等呢?就是位置l - 1与r对应的值相等的时候。于是问题就转换成了:修改操作每次随机修改区间中的一个位置,询问操作每次查询两个位置的值相同的概率。
可以想到一种做法:用线段树维护每个位置上的值为1的概率,然后区间修改+单点查询……可惜这个做法是错误的。为什么?题目中的修改操作规定了:这个区间内有且只有一个值被修改,而一棵线段树体现不了这个限制。
正确的做法是用二维线段树,二维位置(x, y)表示位置x与位置y相同的概率。
查询很简单咯,考虑修改操作。设修改区间是[l, r],len = r - l + 1, 对于位置(x, y):
- x, y 都在修改区间外:没有影响
- x 在修改区间内,y在修改区间外:有\(\frac{1}{len}\)的可能性修改到x,所以答案有\(\frac{1}{len}\)的可能取反。
- x, y 都在修改区间内,有\(\frac{2}{len}\)的可能性修改到x或y(根据限制,不可能同时修改他们两个)。
原先某两点相同概率是\(p\),有\(q\)的概率取反,那么新的相同概率是什么呢?
是原来相同且没取反的概率 + 原来不相同且取反了的概率,即\(p * (1 - q) + q * (1 - p)\)。
可以标记永久化。
还需要注意一个大问题:在题面伪代码中,当询问位置是0的时候,查询操作返回的不是后缀和,而是0。那么对于l = 1的查询操作,我们要输出的概率是位置r的前缀和等于后缀和的概率。这个需要特判。
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <iostream>
#include <cstdlib>
#define space putchar(' ')
#define enter putchar('\n')
using namespace std;
typedef long long ll;
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
const int N = 100005, M = 3e7, P = 998244353;
int n, m, tot, root[4*N], ls[M], rs[M], data[M], ans;
ll inv(ll a){
ll ret = 1, x = P - 2;
while(x){
if(x & 1) ret = ret * a % P;
a = a * a % P;
x >>= 1;
}
return ret;
}
ll merge(ll x, ll y){
return ((x * y % P + ((1 - x) % P) * ((1 - y) % P) % P) % P + P) % P;
}
void change2(int &k, int l, int r, int ql, int qr, int x){
if(!k) k = ++tot, data[k] = 1;
if(ql <= l && qr >= r) return (void)(data[k] = merge(data[k], x));
int mid = (l + r) >> 1;
if(ql <= mid) change2(ls[k], l, mid, ql, qr, x);
if(qr > mid) change2(rs[k], mid + 1, r, ql, qr, x);
}
void change1(int k, int l, int r, int xl, int xr, int yl, int yr, int x){
if(xl <= l && xr >= r) return change2(root[k], 0, n + 1, yl, yr, x);
int mid = (l + r) >> 1;
if(xl <= mid) change1(k << 1, l, mid, xl, xr, yl, yr, x);
if(xr > mid) change1(k << 1 | 1, mid + 1, r, xl, xr, yl, yr, x);
}
void query2(int k, int l, int r, int p){
if(k == 0) return;
ans = merge(ans, data[k]);
if(l == r) return;
int mid = (l + r) >> 1;
if(p <= mid) query2(ls[k], l, mid, p);
else query2(rs[k], mid + 1, r, p);
}
void query1(int k, int l, int r, int x, int y){
query2(root[k], 0, n + 1, y);
if(l == r) return;
int mid = (l + r) >> 1;
if(x <= mid) query1(k << 1, l, mid, x, y);
else query1(k << 1 | 1, mid + 1, r, x, y);
}
int main(){
read(n), read(m);
int op, l, r;
while(m--){
read(op), read(l), read(r);
if(op == 1){
ll x = (1 - inv(r - l + 1) + P) % P;
if(l > 1) change1(1, 0, n + 1, 1, l - 1, l, r, x);
if(r < n) change1(1, 0, n + 1, l, r, r + 1, n, x);
x = (1 - 2 * inv(r - l + 1) % P + P) % P;
change1(1, 0, n + 1, l, r, l, r, x);
change1(1, 0, n + 1, 0, 0, l, r, inv(r - l + 1));
change1(1, 0, n + 1, 0, 0, 0, l - 1, 0);
change1(1, 0, n + 1, 0, 0, r + 1, n + 1, 0);
}
else{
ans = 1;
query1(1, 0, n + 1, l - 1, r);
write(ans), enter;
}
}
return 0;
}
BZOJ 4785 [Zjoi2017]树状数组 | 二维线段树的更多相关文章
- bzoj4785:[ZJOI2017]树状数组:二维线段树
分析: "如果你对树状数组比较熟悉,不难发现可怜求的是后缀和" 设数列为\(A\),那么可怜求的就是\(A_{l-1}\)到\(A_{r-1}\)的和(即\(l-1\)的后缀减\( ...
- bzoj 4822: [Cqoi2017]老C的任务【扫描线+树状数组+二维差分】
一个树状数组能解决的问题分要用树套树--还写错了我别是个傻子吧? 这种题还是挺多的,大概就是把每个矩形询问差分拆成四个点前缀和相加的形式(x1-1,y1-1,1)(x2.y2,1)(x1-1,y2,- ...
- BZOJ4822[Cqoi2017]老C的任务——树状数组(二维数点)
题目描述 老 C 是个程序员. 最近老 C 从老板那里接到了一个任务——给城市中的手机基站写个管理系统.作为经验丰富的程序员,老 C 轻松 地完成了系统的大部分功能,并把其中一个功能交给你来实 ...
- BZOJ1935: [Shoi2007]Tree 园丁的烦恼(树状数组 二维数点)
题意 题目链接 Sol 二维数点板子题 首先把询问拆成四个矩形 然后离散化+树状数组统计就可以了 // luogu-judger-enable-o2 #include<bits/stdc++.h ...
- 树状数组 二维偏序【洛谷P3431】 [POI2005]AUT-The Bus
P3431 [POI2005]AUT-The Bus Byte City 的街道形成了一个标准的棋盘网络 – 他们要么是北南走向要么就是西东走向. 北南走向的路口从 1 到 n编号, 西东走向的路从1 ...
- 树状数组+二维前缀和(A.The beautiful values of the palace)--The Preliminary Contest for ICPC Asia Nanjing 2019
题意: 给你螺旋型的矩阵,告诉你那几个点有值,问你某一个矩阵区间的和是多少. 思路: 以后记住:二维前缀和sort+树状数组就行了!!!. #define IOS ios_base::sync_wit ...
- 【BZOJ3110】【整体二分+树状数组区间修改/线段树】K大数查询
Description 有N个位置,M个操作.操作有两种,每次操作如果是1 a b c的形式表示在第a个位置到第b个位置,每个位置加入一个数c 如果是2 a b c形式,表示询问从第a个位置到第b个位 ...
- [Usaco2014 Open Gold ]Cow Optics (树状数组+扫描线/函数式线段树)
这道题一上手就知道怎么做了= = 直接求出原光路和从目标点出发的光路,求这些光路的交点就行了 然后用树状数组+扫描线或函数式线段树就能过了= = 大量的离散+模拟+二分什么的特别恶心,考试的时候是想到 ...
- HDU - 1166 树状数组模板(线段树也写了一遍)
题意: 汉语题就不说题意了,用到单点修改和区间查询(树状数组和线段树都可以) 思路: 树状数组的单点查询,单点修改和区间查询. 树状数组是巧妙运用二进制的规律建树,建树就相当于单点修改.这里面用到一个 ...
随机推荐
- 12.4 开课三个月(phpcms安装)
cms的样式有很多种,我们学习的是phpcms,这些cms都是大同小异,学会了一种就可以使用其它的cms. PHPCMS是一款网站管理软件.该软件采用模块化开发,支持多种分类方式,使用它可方便实现个性 ...
- 通用漏洞评估方法CVSS3.0简表
CVSS3.0计算分值共有三种维度: 1. 基础度量. 分为 可利用性 及 影响度 两个子项,是漏洞评估的静态分值. 2. 时间度量. 基础维度之上结合受时间影响的三个动态分值,进而评估该漏洞的动态分 ...
- Python 学习 第四篇:动态类型模型
Python的变量不用声明,赋值之后就可以直接使用,类型是在运行过程中自动确定的,这就是动态类型模型.该模型把变量和对象设计成两个不同的实体,对象是存储数据的地方,对象的类型是由初始值自动决定的,而变 ...
- .Net版本依赖之坑引发的搜查
前言 今天上午,一个客户反馈XX消息没有推送到第三方链接.于是我查看了推送日志列表,并没有今天的.接着登录服务器查询文件日志,看到了记录.我们的代码步骤是消息先推送到消息队列,消费消息队列时,记录文件 ...
- Python:线程之定位与销毁
背景 开工前我就觉得有什么不太对劲,感觉要背锅.这可不,上班第三天就捅锅了. 我们有个了不起的后台程序,可以动态加载模块,并以线程方式运行,通过这种形式实现插件的功能.而模块更新时候,后台程序自身不会 ...
- js类型----你所不知道的JavaScript系列(5)
ECMAScirpt 变量有两种不同的数据类型:基本类型,引用类型.也有其他的叫法,比如原始类型和对象类型等. 1.内置类型 JavaScript 有七种内置类型: • 空值(null) • 未定义( ...
- RabbitMQ 发布订阅-实现延时重试队列(参考)
RabbitMQ消息处理失败,我们会让失败消息进入重试队列等待执行,因为在重试队列距离真正执行还需要定义的时间间隔,因此,我们可以将重试队列设置成延时处理.今天参考网上其他人的实现,简单梳理下消息延时 ...
- 程序员眼中的Redis
Redis 是用C语言编写的内存中的数据结构存储系统,可以用来作数据库.缓存.消息中间件. 数据结构 字符串(strings):值是任何种类的字符串 散列(hashs):值是map 字典,数组+链表, ...
- Object-Oriented(二)原型对象
自用备忘笔记 1. 理解原型对象 只要创建函数,函数上就会创建一个 prototype 属性指向函数的原型对象. function Person() {} Person.prototype //指向该 ...
- Doors Breaking and Repairing CodeForces - 1102C (思维)
You are policeman and you are playing a game with Slavik. The game is turn-based and each turn consi ...