传送门

题意:$T$组数据,每组数据给出一个$N$个点,$M$条边,并存在一个$N$元环的图,试判断其是否为一个可平面图(如果存在一种画法,使得该图与给出的图同构且边除了在顶点处以外互相不相交,则称其为可平面图)$T \leq 100 , N \leq 200 , M \leq 10000$


关于平面图的性质可以参照这一个PPT

我们需要用到平面图的一个推论:在极大平面图(不能再加边的平面图)上,$M = 3 \times N - 6$(PPT里面有证明)

所以对于$M > 3 \times N - 6$的情况可以直接判定为NO,这样我们需要处理的问题的边数变为了$O(N)$级别。

接下来我们考虑$N$元环的作用。一个$N$元环将整个图分成了两个部分,一个在环内,一个在环外,而环内和环外连的边不能在非顶点处相交。这个问题可以通过并查集来实现,将一条边看做两个点(一个表示不与当前边排斥,一个表示与当前边排斥),对于互相排斥的边在并查集上合并,最后考虑是否存在一条边的两个点在一个集合内即可。

 #include<bits/stdc++.h>
 using namespace std;

 inline int read(){
     ;
     ;
     char c = getchar();
     while(!isdigit(c)){
         if(c == '-')
             f = ;
         c = getchar();
     }
     while(isdigit(c)){
         a = (a << ) + (a << ) + (c ^ ');
         c = getchar();
     }
     return f ? -a : a;
 }

 struct Edge{
     int start , end;
 }Ed[];
 map < int , int > lsh;
 ];

 bool cmp(Edge a , Edge b){
     return a.start < b.start;
 }

 inline void init(){
      ; i <= M <<  ; i++)
         fa[i] = i;
 }

 int find(int x){
     return fa[x] == x ? x : (fa[x] = find(fa[x]));
 }

 int main(){
 #ifdef LG
     freopen("3209.in" , "r" , stdin);
     freopen("3209.out" , "w" , stdout);
 #endif
     for(int T = read() ; T ; T--){
         N = read();
         M = read();
          ; i <= M ; i++){
             Ed[i].start = read();
             Ed[i].end = read();
         }
         lsh.clear();
          ; i <= N ; i++)
             lsh[read()] = i;
          * N - ){
             cout << "NO" << endl;
             continue;
         }
          ; i <= M ; i++){
             Ed[i].start = lsh[Ed[i].start];
             Ed[i].end = lsh[Ed[i].end];
             if(Ed[i].start > Ed[i].end)
                 swap(Ed[i].start , Ed[i].end);
         }
         init();
         sort(Ed +  , Ed + M +  , cmp);
         ;
          ; f && i <= M ; i++){
              ; f && j ; j--)
                 if(Ed[j].end > Ed[i].start && Ed[j].end < Ed[i].end && Ed[j].start < Ed[i].start){
                     fa[find(j)] = find(i + M);
                     fa[find(i)] = find(j + M);
                     if(find(i) == find(i + M) || find(j) == find(j + M))
                         f = ;
                 }
         }
         cout << (f ? "YES" : "NO") << endl;
     }
     ;
 }

Luogu3209 HNOI2010 平面图判定 平面图、并查集的更多相关文章

  1. 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)

    [BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...

  2. 【bzoj4423】[AMPPZ2013]Bytehattan(平面图转对偶图+并查集)

    题目传送门:bzoj4423 如果是普通的删边判连通性,我们可以很显然的想到把操作离线下来,倒着加边.然而,这题强 制 在 线. 虽然如此,但是题目所给的图是个平面图.那么我们把它转成对偶图试试看? ...

  3. BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集

    Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...

  4. hihoCoder 树结构判定(并查集)

    思路:树满足两个条件: 1.顶点数等于边数加一 2.所有的顶点在一个联通块 那么直接dfs或者并查集就可以了. AC代码 #include <stdio.h> #include<st ...

  5. NYOJ 129 树的判定 (并查集)

    题目链接 描述 A tree is a well-known data structure that is either empty (null, void, nothing) or is a set ...

  6. BZOJ1997 平面图判定 平面图性质 2-sat

    相交的两条边不能在同一侧,用2-sat即可. 平面图点数-边数关系 \(E\le 3V-6\) 写这篇文章我只是想说明,知乎一小时,题解一分钟. lb Zhihu, gos langar Qarwet ...

  7. [HIHO1322]树结构判定(并查集)

    题目链接:http://hihocoder.com/problemset/problem/1322 给一个图,判断这个图是不是一棵树. 判定的方法:首先是连通图,其次所有点的入度都小于等于1. /* ...

  8. BZOJ1997 HNOI2010 平面图判定 planar (并查集判二分图)

    题意 判断一个存在哈密顿回路的图是否是平面图. n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000 题解 如果一定存在一个环,那么连的边要么在环里面要么在外面.那么 ...

  9. Luogu P3209 [HNOI2010]平面图判定(2-SAT)

    P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...

随机推荐

  1. 在vue配置sass

    先npm两个插件 npm install sass-loader --save-dev npm install node-sass --save-dev 然后在webpack当中配置 { test: ...

  2. web全栈架构师[笔记] — 01 ECMAScript6新特性

    ES6新特性 一.变量 var:重复定义不报错:没有块级作用域:不能限制修改 let:变量,不能重复定义,有块级作用域 const:常量,不能重复定义,有块级作用域 二.函数/参数 箭头函数——简写: ...

  3. linux(乌班图)修改apt下载源

    有时候会出现乌班图系统刚安装,无法使用apt下载安装软件工具,此时需要修改apt下载源. 1.进入/etc/apt/目录下  2.备份sources.list文件(如果不在root用户下,需在前面加s ...

  4. 分享MYSQL中的各种高可用技术

    分享MYSQL中的各种高可用技术 图片和资料来源于姜承尧老师(MYSQL技术内幕作者) mysql高可用各个技术的比较 数据库的可靠指的是数据可靠 数据库可用指的是数据库服务可用 可靠的是数据:例如工 ...

  5. SQL Server 2005详细安装过程及配置

    说明:个人感觉SQL Server 2005是目前所有的SQL Server版本当中最好用的一个版本了,原因就是这个版本比起其它版本来说要安装简单,操作简便,只可惜这个版本只能在Windows7或者低 ...

  6. Fragment分解使用

    Fragment碎片:作为Activity的一部分,不能单独使用: 1. Fragment特点: (1)一个Fragment可以在多个Activity中重用: (2)一个Activity内部可以嵌入多 ...

  7. Hbase-2.0.0_02_常用操作

    主要是常用的hbase shell命令,包括表的创建与删除,表数据的增删查[hbase没有修改]:以及hbase的导出与导入. 参考教程:HBase教程 参考博客:hbase shell基础和常用命令 ...

  8. January 17th, 2018 Week 03rd Wednesday

    Don't let go too soon, but don't hold on too long. 不要太快放手,也别紧握太久. It is inevitalbe to encounter with ...

  9. Java中BufferedReader到底是一个什么类?

    1.java.io.BufferedReader 和 java.io.BufferedWriter 类各拥有8192字符的缓冲区.当BufferedReader在读取文本文件时,会先尽量从文件中读入字 ...

  10. spring4整合xfire1.2.6的问题解决

    历史原因,需要用xfire发布webservice,项目用了spring4,整合几个坑,记录下(其他的配置忽略,相关资料比较多): 1. xfire定义bean的时候,用了 singleton 属性, ...