Luogu3209 HNOI2010 平面图判定 平面图、并查集
题意:$T$组数据,每组数据给出一个$N$个点,$M$条边,并存在一个$N$元环的图,试判断其是否为一个可平面图(如果存在一种画法,使得该图与给出的图同构且边除了在顶点处以外互相不相交,则称其为可平面图)$T \leq 100 , N \leq 200 , M \leq 10000$
关于平面图的性质可以参照这一个PPT
我们需要用到平面图的一个推论:在极大平面图(不能再加边的平面图)上,$M = 3 \times N - 6$(PPT里面有证明)
所以对于$M > 3 \times N - 6$的情况可以直接判定为NO,这样我们需要处理的问题的边数变为了$O(N)$级别。
接下来我们考虑$N$元环的作用。一个$N$元环将整个图分成了两个部分,一个在环内,一个在环外,而环内和环外连的边不能在非顶点处相交。这个问题可以通过并查集来实现,将一条边看做两个点(一个表示不与当前边排斥,一个表示与当前边排斥),对于互相排斥的边在并查集上合并,最后考虑是否存在一条边的两个点在一个集合内即可。
#include<bits/stdc++.h>
using namespace std;
inline int read(){
;
;
char c = getchar();
while(!isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(isdigit(c)){
a = (a << ) + (a << ) + (c ^ ');
c = getchar();
}
return f ? -a : a;
}
struct Edge{
int start , end;
}Ed[];
map < int , int > lsh;
];
bool cmp(Edge a , Edge b){
return a.start < b.start;
}
inline void init(){
; i <= M << ; i++)
fa[i] = i;
}
int find(int x){
return fa[x] == x ? x : (fa[x] = find(fa[x]));
}
int main(){
#ifdef LG
freopen("3209.in" , "r" , stdin);
freopen("3209.out" , "w" , stdout);
#endif
for(int T = read() ; T ; T--){
N = read();
M = read();
; i <= M ; i++){
Ed[i].start = read();
Ed[i].end = read();
}
lsh.clear();
; i <= N ; i++)
lsh[read()] = i;
* N - ){
cout << "NO" << endl;
continue;
}
; i <= M ; i++){
Ed[i].start = lsh[Ed[i].start];
Ed[i].end = lsh[Ed[i].end];
if(Ed[i].start > Ed[i].end)
swap(Ed[i].start , Ed[i].end);
}
init();
sort(Ed + , Ed + M + , cmp);
;
; f && i <= M ; i++){
; f && j ; j--)
if(Ed[j].end > Ed[i].start && Ed[j].end < Ed[i].end && Ed[j].start < Ed[i].start){
fa[find(j)] = find(i + M);
fa[find(i)] = find(j + M);
if(find(i) == find(i + M) || find(j) == find(j + M))
f = ;
}
}
cout << (f ? "YES" : "NO") << endl;
}
;
}
Luogu3209 HNOI2010 平面图判定 平面图、并查集的更多相关文章
- 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)
[BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...
- 【bzoj4423】[AMPPZ2013]Bytehattan(平面图转对偶图+并查集)
题目传送门:bzoj4423 如果是普通的删边判连通性,我们可以很显然的想到把操作离线下来,倒着加边.然而,这题强 制 在 线. 虽然如此,但是题目所给的图是个平面图.那么我们把它转成对偶图试试看? ...
- BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集
Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...
- hihoCoder 树结构判定(并查集)
思路:树满足两个条件: 1.顶点数等于边数加一 2.所有的顶点在一个联通块 那么直接dfs或者并查集就可以了. AC代码 #include <stdio.h> #include<st ...
- NYOJ 129 树的判定 (并查集)
题目链接 描述 A tree is a well-known data structure that is either empty (null, void, nothing) or is a set ...
- BZOJ1997 平面图判定 平面图性质 2-sat
相交的两条边不能在同一侧,用2-sat即可. 平面图点数-边数关系 \(E\le 3V-6\) 写这篇文章我只是想说明,知乎一小时,题解一分钟. lb Zhihu, gos langar Qarwet ...
- [HIHO1322]树结构判定(并查集)
题目链接:http://hihocoder.com/problemset/problem/1322 给一个图,判断这个图是不是一棵树. 判定的方法:首先是连通图,其次所有点的入度都小于等于1. /* ...
- BZOJ1997 HNOI2010 平面图判定 planar (并查集判二分图)
题意 判断一个存在哈密顿回路的图是否是平面图. n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000 题解 如果一定存在一个环,那么连的边要么在环里面要么在外面.那么 ...
- Luogu P3209 [HNOI2010]平面图判定(2-SAT)
P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...
随机推荐
- 为什么radio没有出现单选效果?
原因是radio一定要设置相同的name,如下: <input type="radio" name="yunsuan" checked="che ...
- ExtJS学习之MessageBox
MessageBox为ExtJS中的消息对话框,包括alert confirm prompt show四种. 1.index.html <!DOCTYPE html PUBLIC " ...
- 【面试】Python面试题库
https://blog.csdn.net/ChenVast/article/details/81451460 第一部分 Python基础篇(80题) 为什么学习Python? 通过什么途径学习的Py ...
- Linux 学习笔记之超详细基础linux命令 Part 3
Linux学习笔记之超详细基础linux命令 by:授客 QQ:1033553122 ---------------------------------接Part 2----------------- ...
- MVC与单元测试实践之健身网站(七)-日程与打卡
上一篇完成了计划的制定,然后需要把计划转换为日程,在日历视图上直观地显示,与日程相对应的还有完成日程内容后的打卡动作. 一 日程视图 a) 要把循环的计划铺开成为日程,日程的显示用日历视图是最合适的. ...
- (网页)12种不宜使用的Javascript语法(转)
转自阮一峰: 最近写的一些小东西,总是出各种各样的问题,用了angular.js反应居然比我的jQuery还慢,客户吐槽了,我又把一个小操作,改成了jQuery.浏览一下大神的的博客.转载一点东西: ...
- 将你的 Virtual dom 渲染成 Canvas
项目概述 一个基于Vue的virtual dom插件库,按照Vue render 函数的写法,直接将Vue生成的Vnode渲染到canvas中.支持常规的滚动操作和一些基础的元素事件绑定. githu ...
- 【第七篇】SAP ABAP7.5x新语法之F4增强
公众号:SAP Technical 本文作者:matinal 原文出处:http://www.cnblogs.com/SAPmatinal/ 原文链接:SAP ABAP7.5x系列之F4增强 前言部分 ...
- momentjs 学习
momentjs 是一个JavaScript日期处理类库,官网地址:http://momentjs.com/ 字符串 + 格式 moment(String, String); moment(Strin ...
- SonarQube 配置 LDAP(AD域)
安装插件 1.下载 LDAP Plugin 插件,地址:https://docs.sonarqube.org/display/SONARQUBE67/LDAP+Plugin2.将下载的插件,放到 SO ...