Luogu3209 HNOI2010 平面图判定 平面图、并查集
题意:$T$组数据,每组数据给出一个$N$个点,$M$条边,并存在一个$N$元环的图,试判断其是否为一个可平面图(如果存在一种画法,使得该图与给出的图同构且边除了在顶点处以外互相不相交,则称其为可平面图)$T \leq 100 , N \leq 200 , M \leq 10000$
关于平面图的性质可以参照这一个PPT
我们需要用到平面图的一个推论:在极大平面图(不能再加边的平面图)上,$M = 3 \times N - 6$(PPT里面有证明)
所以对于$M > 3 \times N - 6$的情况可以直接判定为NO,这样我们需要处理的问题的边数变为了$O(N)$级别。
接下来我们考虑$N$元环的作用。一个$N$元环将整个图分成了两个部分,一个在环内,一个在环外,而环内和环外连的边不能在非顶点处相交。这个问题可以通过并查集来实现,将一条边看做两个点(一个表示不与当前边排斥,一个表示与当前边排斥),对于互相排斥的边在并查集上合并,最后考虑是否存在一条边的两个点在一个集合内即可。
#include<bits/stdc++.h>
using namespace std;
inline int read(){
;
;
char c = getchar();
while(!isdigit(c)){
if(c == '-')
f = ;
c = getchar();
}
while(isdigit(c)){
a = (a << ) + (a << ) + (c ^ ');
c = getchar();
}
return f ? -a : a;
}
struct Edge{
int start , end;
}Ed[];
map < int , int > lsh;
];
bool cmp(Edge a , Edge b){
return a.start < b.start;
}
inline void init(){
; i <= M << ; i++)
fa[i] = i;
}
int find(int x){
return fa[x] == x ? x : (fa[x] = find(fa[x]));
}
int main(){
#ifdef LG
freopen("3209.in" , "r" , stdin);
freopen("3209.out" , "w" , stdout);
#endif
for(int T = read() ; T ; T--){
N = read();
M = read();
; i <= M ; i++){
Ed[i].start = read();
Ed[i].end = read();
}
lsh.clear();
; i <= N ; i++)
lsh[read()] = i;
* N - ){
cout << "NO" << endl;
continue;
}
; i <= M ; i++){
Ed[i].start = lsh[Ed[i].start];
Ed[i].end = lsh[Ed[i].end];
if(Ed[i].start > Ed[i].end)
swap(Ed[i].start , Ed[i].end);
}
init();
sort(Ed + , Ed + M + , cmp);
;
; f && i <= M ; i++){
; f && j ; j--)
if(Ed[j].end > Ed[i].start && Ed[j].end < Ed[i].end && Ed[j].start < Ed[i].start){
fa[find(j)] = find(i + M);
fa[find(i)] = find(j + M);
if(find(i) == find(i + M) || find(j) == find(j + M))
f = ;
}
}
cout << (f ? "YES" : "NO") << endl;
}
;
}
Luogu3209 HNOI2010 平面图判定 平面图、并查集的更多相关文章
- 【BZOJ1998】[HNOI2010]物品调度(并查集,模拟)
[BZOJ1998][HNOI2010]物品调度(并查集,模拟) 题面 BZOJ,为啥这题都是权限题啊? 洛谷 题解 先不管\(0\)位置是个空,把它也看成一个箱子.那么最终的答案显然和置换循环节的个 ...
- 【bzoj4423】[AMPPZ2013]Bytehattan(平面图转对偶图+并查集)
题目传送门:bzoj4423 如果是普通的删边判连通性,我们可以很显然的想到把操作离线下来,倒着加边.然而,这题强 制 在 线. 虽然如此,但是题目所给的图是个平面图.那么我们把它转成对偶图试试看? ...
- BZOJ 4423: [AMPPZ2013]Bytehattan 平面图转对偶图 + 并查集
Description 比特哈顿镇有n*n个格点,形成了一个网格图.一开始整张图是完整的.有k次操作,每次会删掉图中的一条边(u,v),你需要回答在删除这条边之后u和v是否仍然连通. Input 第一 ...
- hihoCoder 树结构判定(并查集)
思路:树满足两个条件: 1.顶点数等于边数加一 2.所有的顶点在一个联通块 那么直接dfs或者并查集就可以了. AC代码 #include <stdio.h> #include<st ...
- NYOJ 129 树的判定 (并查集)
题目链接 描述 A tree is a well-known data structure that is either empty (null, void, nothing) or is a set ...
- BZOJ1997 平面图判定 平面图性质 2-sat
相交的两条边不能在同一侧,用2-sat即可. 平面图点数-边数关系 \(E\le 3V-6\) 写这篇文章我只是想说明,知乎一小时,题解一分钟. lb Zhihu, gos langar Qarwet ...
- [HIHO1322]树结构判定(并查集)
题目链接:http://hihocoder.com/problemset/problem/1322 给一个图,判断这个图是不是一棵树. 判定的方法:首先是连通图,其次所有点的入度都小于等于1. /* ...
- BZOJ1997 HNOI2010 平面图判定 planar (并查集判二分图)
题意 判断一个存在哈密顿回路的图是否是平面图. n≤200,m≤10000n\le200,m\le10000n≤200,m≤10000 题解 如果一定存在一个环,那么连的边要么在环里面要么在外面.那么 ...
- Luogu P3209 [HNOI2010]平面图判定(2-SAT)
P3209 [HNOI2010]平面图判定 题意 题目描述 若能将无向图\(G=(V,E)\)画在平面上使得任意两条无重合顶点的边不相交,则称\(G\)是平面图.判定一个图是否为平面图的问题是图论中的 ...
随机推荐
- Tars --- Hello World
服务端开发 1,创建一个 webapp maven 项目,pom.xml 导入依赖 <dependency> <groupId>com.tencent.tars</gro ...
- python学习第一周(1)
备注:一般规范代码,可以操作code-reformat code 1. #!/usr/bin/env python 脚本语言第一行 作用:文件中代码用指定可执行程序运行,在unix类的操作系统才有意义 ...
- MySQL修改编码为UTF-8无效果解决办法
本来这是一件很简单的事,有很多博客里都有教程,但却足足花了我半天的时间才解决问题. 可能是因为我的MySQL安装时没有选择默认路径的原因,按照网上的教程修改了下图中的my.ini配置文件后编码并没有发 ...
- python第六十一天,第六十二天 redis
redis 缓存系统 redis是业界主流的key-value nosql 数据库之一.和Memcached类似,它支持存储的value类型相对更多,包括string(字符串).list(链表).se ...
- python第六十天-----RabbitMQ
RabbitMQ消息队列:默认为消息轮循模式,按client端启动是顺序接收 server端 import pika connection = pika.BlockingConnection(pika ...
- Linux 内存池【转】
内存池(Memery Pool)技术是在真正使用内存之前,先申请分配一定数量的.大小相等(一般情况下)的内存块留作备用.当有新的内存需求时,就从内存池中分出一部分内存块,若内存块不够再继续申请新的内存 ...
- linux下安装mysql简单步骤
linux下使用yum安装mysql 1.安装 查看有没有安装过: yum list installed mysql* rpm -qa | grep mysql* 查看有没有安装包: yum list ...
- 第6章 linux的文件权限与目录配置
6.1用户与用户组 用户,自己的抽屉 用户组,自己的家 其他人(others),外人 root,天神 /etc/passwd 所有的系统上的账号与一般身份用户,root的相关信息 /etc/shado ...
- win10系统如何关掉系统自动更新
越来越多的电脑使用者都在使用Windows10系统,尽管系统是一代代更新的,但难免有槽点,Windows10系统也不例外,最大的槽点就是“自动更新”的功能.当然,“自动更新”的功能也是相当有用处的. ...
- pt-query-digest详解慢查询日志(转)
一.简介 pt-query-digest是用于分析mysql慢查询的一个工具,它可以分析binlog.General log.slowlog,也可以通过SHOWPROCESSLIST或者通过tcpdu ...