BZOJ4569 SCOI2016萌萌哒(倍增+并查集)
一个显然的暴力是用并查集记录哪些位之间是相等的。但是这样需要连nm条边,而实际上至多只有n条边是有用的,冗余过多。
于是考虑优化。使用类似st表的东西,f[i][j]表示i~i+2^j-1与f[i][j]~f[i][j]+2^j-1连接起来了,也就是把这一大段看成一个点所建立的并查集。那么每个限制只要拆成两段就可以了。最后查询的时候,需要把信息下传,即f[i][j]下传到f[i][j-1]和f[i+2^(j-1)][j-1],表示这两段各自分别对应。于是复杂度变成了O(nlognαn)。这个做法能优化复杂度的关键在于每次下传过程中都去除了一些冗余边使其不再会下传了。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 100010
#define P 1000000007
int n,m,fa[N][],lg2[N],ans=;
int find(int x,int j){return fa[x][j]==x?x:fa[x][j]=find(fa[x][j],j);}
void merge(int x,int y,int k){fa[find(x,k)][k]=find(y,k);}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4569.in","r",stdin);
freopen("bzoj4569.out","w",stdout);
const char LL[]="%I64d";
#else
const char LL[]="%lld";
#endif
n=read(),m=read();
for (int i=;i<=n;i++)
for (int j=;j<=;j++)
fa[i][j]=i;
lg2[]=;
for (int i=;i<=n;i++)
{
lg2[i]=lg2[i-];
if ((<<lg2[i])<=i) lg2[i]++;
}
for (int i=;i<=m;i++)
{
int l1=read(),r1=read(),l2=read(),r2=read();
merge(l1,l2,lg2[r1-l1+]);
merge(r1-(<<lg2[r1-l1+])+,r2-(<<lg2[r1-l1+])+,lg2[r1-l1+]);
}
for (int j=;j>=;j--)
for (int i=;i<=n;i++)
if (fa[i][j]!=i) merge(i,fa[i][j],j-),merge(i+(<<j-),fa[i][j]+(<<j-),j-);
for (int i=;i<=n;i++) if (find(i,)==i) ans++;
int t=;
for (int i=;i<=ans;i++) t=10ll*t%P;
cout<<t;
return ;
}
BZOJ4569 SCOI2016萌萌哒(倍增+并查集)的更多相关文章
- [BZOJ4569][SCOI2016]萌萌哒(倍增+并查集)
首先有一个显然的$O(n^2)$暴力做法,将每个位置看成点,然后将所有限制相等的数之间用并查集合并,最后答案就是9*(10^连通块的个数).(特判n=1时就是10). 然后比较容易想到的是,由于每次合 ...
- 【BZOJ4569】[Scoi2016]萌萌哒 倍增+并查集
[BZOJ4569][Scoi2016]萌萌哒 Description 一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四 ...
- BZOJ4569 [SCOI2016]萌萌哒 【并查集 + 倍增】
题目链接 BZOJ4569 题解 倍增的思想很棒 题目实际上就是每次让我们合并两个区间对应位置的数,最后的答案\(ans = 9 \times 10^{tot - 1}\),\(tot\)是联通块数, ...
- 2018.07.31 bzoj4569: [Scoi2016]萌萌哒(并查集+倍增)
传送门 对于每个限制,使用倍增的二进制拆分思想,用并查集数组fa[i][j]" role="presentation" style="position: rel ...
- [SCOI2016]萌萌哒(倍增+并查集)
一个长度为n的大数,用S1S2S3...Sn表示,其中Si表示数的第i位,S1是数的最高位,告诉你一些限制条件,每个条件表示为四个数,l1,r1,l2,r2,即两个长度相同的区间,表示子串Sl1Sl1 ...
- BZOJ4569 [Scoi2016]萌萌哒(并查集,倍增)
类似\(ST表\)的思想,倍增\(log(n)\)地合并 你是我家的吗?不是就来呀啦啦啦.还有要来的吗?没了!那有多少个家就映射多少答案呀 倍增原来这么好玩 #include <iostream ...
- 【BZOJ4569】萌萌哒(并查集,倍增)
[BZOJ4569]萌萌哒(并查集,倍增) 题面 BZOJ 题意: 有一个长度为\(n\)的数 给定\(m\)个限制条件 每次限制\(l1-r1\)与\(l2-r2\)是相同的 求出方案数 题解 如果 ...
- 洛谷P3295 萌萌哒 [SCOI2016] 倍增+并查集
正解:倍增+并查集 解题报告: 传送门! 首先不难想到暴力?就考虑把区间相等转化成对应点对相等,然后直接对应点连边,最后求有几个连通块就好辣 然后看下复杂度,修改是O(n2)查询是O(n),就比较容易 ...
- 【BZOJ 4569】 4569: [Scoi2016]萌萌哒 (倍增+并查集)
4569: [Scoi2016]萌萌哒 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 865 Solved: 414 Description 一个长 ...
随机推荐
- Luogu P2700 逐个击破
qwq 同关押罪犯 对于这种希望几个对象分开的题目,只要把并查集反过来想就可以了. 既然要求删除的边权最小,那么只要反过来求给定的点不连通时保留的边权最大即为正解. 同样的,首先将边权排序,不会使敌人 ...
- linux gcc nginx
1.安装GCC[root@rekfan.com opt]# rpm -ivh cpp-4.1.2-48.el5.i386.rpm[root@rekfan.com opt]# rpm -ivh kern ...
- linux内存源码分析 - SLAB分配器概述
本文为原创,转载请注明:http://www.cnblogs.com/tolimit/ 之前说了管理区页框分配器,这里我们简称为页框分配器,在页框分配器中主要是管理物理内存,将物理内存的页框分配给申请 ...
- 1-微信小程序开发(安装软件和运行第一个微信小程序)
https://developers.weixin.qq.com/miniprogram/dev/ 我的 打开 上传成功后
- ASP.NET Core StaticFiles中间件修改wwwroot(转载)
ASP.NET Core 开发,中间件(StaticFiles)的使用,我们开发一款简易的静态文件服务器.告别需要使用文件,又需要安装一个web服务器.现在随时随地打开程序即可使用,跨平台,方便快捷. ...
- SQL Server-聚焦深入理解死锁以及避免死锁建议(转载)
前言 终于进入死锁系列,前面也提到过我一直对隔离级别和死锁以及如何避免死锁等问题模棱两可,所以才鼓起了重新学习SQL Server系列的勇气,本节我们来讲讲SQL Server中的死锁,看到许多文章都 ...
- Perhaps you are running on a JRE rather than a JDK
在Eclipse中跑maven项目时,出现上面的问题: 1.有可能你的环境变量配置是在jre上面的,所以你要检查一下你配置文件,PATH和CLASSPATH都要检查 2.eclipse默认是跑在jre ...
- zjoi2018 day1游记
咕咕咕 upd:看见有人贴上zhihu的问题,那个我早就看到了... 谴责一番题主 @gzy_cjoier 阅读量马上700没想到吧 既然这么火我挂个广告吧 永别,OI 听说有人催更??
- Quartz_简单使用
第一步:安装 新建一个QuartzDemo项目后,安装下面的程序包 Install-Package Quartz Install-Package Common.Logging.Log4Net1211 ...
- D. Little C Loves 3 II
传送门 [http://codeforces.com/contest/1047/problem/D] 题意 给你n*m得棋盘,让你找两点之间距离为3的点的个数,不能重复使用,距离定义,两坐标差绝对值之 ...