Watering the Fields

时间限制: 1 Sec  内存限制: 64 MB
提交: 26  解决: 10
[提交][状态][讨论版]

题目描述

Due
to a lack of rain, Farmer John wants to build an irrigation system to
send water between his N fields (1 <= N <= 2000).

Each field i is described by a distinct
point (xi, yi) in the 2D plane,with 0 <= xi, yi <= 1000.  The cost
of building a water pipe between two fields i and j is equal to the
squared Euclidean distance between them:
(xi - xj)^2 + (yi - yj)^2

FJ would like to build a minimum-cost
system of pipes so that all of his fields are linked together -- so that
water in any field can follow a sequence of pipes to reach any other
field.

Unfortunately, the contractor who is
helping FJ install his irrigation system refuses to install any pipe
unless its cost (squared Euclidean length) is at least C (1 <= C
<= 1,000,000).

Please help FJ compute the minimum amount he will need pay to connect all his fields with a network of pipes.

输入

* Line 1: The integers N and C.
* Lines 2..1+N: Line i+1 contains the integers xi and yi.

输出

* Line 1: The minimum cost of a network of pipes connecting the fields, or -1 if no such network can be built.

样例输入

3 11
0 2
5 0
4 3

样例输出

46

提示

There are 3 fields, at locations (0,2), (5,0), and (4,3).  The contractor will only install pipes of cost at least 11.FJ cannot build a pipe between the fields at (4,3) and (5,0), since its cost would be only 10.  He therefore builds a pipe between (0,2) and (5,0) at cost 29, and a pipe between (0,2) and (4,3) at cost 17.

【分析】最小生成树(裸)。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = 4e3;
const int M = ;
int n,m,k,edg[N][N],lowcost[N],pre[N];
void Prim() {
for(int i=;i<=n;i++){
lowcost[i]=edg[][i];
}
lowcost[]=-;
int sum=;
for(int i=;i<n;i++){
int minn=;
for(int j=;j<=n;j++){
if(lowcost[j]!=-&&lowcost[j]<minn){
minn=lowcost[j];
k=j;
}
}
if(minn>=){
puts("-1");
return;
}
sum+=minn;
lowcost[k]=-;
for(int j=;j<=n;j++){
if(edg[j][k]<lowcost[j]){
lowcost[j]=edg[j][k];
}
}
}
printf("%d\n",sum);
}
int main()
{
for(int i=;i<N;i++)for(int j=;j<N;j++)edg[i][j]=;
int u,v,x[N],y[N];
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
int s=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
if(s>=m)edg[i][j]=edg[j][i]=s;
}
}
Prim();
return ;
}

(寒假集训)Watering the Fields (最小生成树)的更多相关文章

  1. P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  2. 洛谷 P2212 [USACO14MAR]浇地Watering the Fields 题解

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  3. BZOJ3479: [Usaco2014 Mar]Watering the Fields

    3479: [Usaco2014 Mar]Watering the Fields Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 81  Solved: ...

  4. BZOJ 3479: [Usaco2014 Mar]Watering the Fields( MST )

    MST...一开始没注意-1结果就WA了... ---------------------------------------------------------------------------- ...

  5. bzoj 3479: [Usaco2014 Mar]Watering the Fields

    3479: [Usaco2014 Mar]Watering the Fields Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 174  Solved ...

  6. CSU-ACM寒假集训选拔-入门题

    CSU-ACM寒假集训选拔-入门题 仅选择部分有价值的题 J(2165): 时间旅行 Description 假设 Bobo 位于时间轴(数轴)上 t0 点,他要使用时间机器回到区间 (0, h] 中 ...

  7. 洛谷——P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  8. BZOJ 3479: [Usaco2014 Mar]Watering the Fields(最小生成树)

    这个= =最近刷的都是水题啊QAQ 排除掉不可能的边然后就最小生成树就行了= = CODE: #include<cstdio>#include<iostream>#includ ...

  9. 【2018寒假集训Day 8】【最小生成树】Prim和Kruskal算法模板

    Luogu最小生成树模板题 Prim 原理与dijkstra几乎相同,每次找最优的点,用这个点去松弛未连接的点,也就是用这个点去与未连接的点连接. #include<cstdio> #in ...

随机推荐

  1. 在SqlServer中通过SQL语句实现树状查询

    CREATE PROCEDURE [dbo].[GetTree] @Id int AS BEGIN with cte as ( as lvl from Entity where Id = @Id un ...

  2. linux驱动学习_1

    目前项目需要,需要做linux驱动了,记录一下 学习驱动,大家一定都会写一个hello world代码,网上也有很多范例,但是记录一下遇到的问题. 1.make之后,使用insmod加载,终端没有打印 ...

  3. cinatra--一个高效易用的c++ http框架

    cinatra是一个高性能易用的http框架,它是用modern c++(c++17)开发的,它的目标是提供一个快速开发的c++ http框架.它的主要特点如下: 统一而简单的接口 header-on ...

  4. PEAR DB 事务相关

    1.autoCommit().commit().rollback() function autoCommit($onoff=false) 指定是否自动提交事务.有的后端数据库不支持. function ...

  5. 【多线程学习(1)】创建java多线程

    1)java多线程的创建方式有三种: 1.继承Thread类 2.实现Runnable接口 3.实现Callable接口 第一种: //继承Thread类 class ExtendsThread ex ...

  6. Kd-Tree&Ransac笔记

    关于sift资源总结: http://blog.csdn.net/masibuaa/article/details/9191309 两个比较好的资源: https://my.oschina.net/k ...

  7. 台州学院maximum cow训练记录

    前队名太过晦气,故启用最大牛 我们的组队大概就是18年初,组队阵容是17级生詹志龙.陶源和16级的黄睿博. 三人大学前均无接触过此类竞赛,队伍十分年轻.我可能是我们队最菜的,我只是知道的内容最多,靠我 ...

  8. Java Web Action DAO Service层次理解

    参考来源:http://blog.csdn.net/inter_peng/article/details/41021727 1. Action/Service/DAO简介: Action是管理业务(S ...

  9. nyoj 题目16 矩形嵌套

    矩形嵌套 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c,d)中当且仅当a& ...

  10. 【bzoj2793】[Poi2012]Vouchers 暴力

    题目描述 考虑正整数集合,现在有n组人依次来取数,假设第i组来了x人,他们每个取的数一定是x的倍数,并且是还剩下的最小的x个.正整数中有m个数被标成了幸运数,问有哪些人取到了幸运数. 输入 第一行一个 ...