Watering the Fields

时间限制: 1 Sec  内存限制: 64 MB
提交: 26  解决: 10
[提交][状态][讨论版]

题目描述

Due
to a lack of rain, Farmer John wants to build an irrigation system to
send water between his N fields (1 <= N <= 2000).

Each field i is described by a distinct
point (xi, yi) in the 2D plane,with 0 <= xi, yi <= 1000.  The cost
of building a water pipe between two fields i and j is equal to the
squared Euclidean distance between them:
(xi - xj)^2 + (yi - yj)^2

FJ would like to build a minimum-cost
system of pipes so that all of his fields are linked together -- so that
water in any field can follow a sequence of pipes to reach any other
field.

Unfortunately, the contractor who is
helping FJ install his irrigation system refuses to install any pipe
unless its cost (squared Euclidean length) is at least C (1 <= C
<= 1,000,000).

Please help FJ compute the minimum amount he will need pay to connect all his fields with a network of pipes.

输入

* Line 1: The integers N and C.
* Lines 2..1+N: Line i+1 contains the integers xi and yi.

输出

* Line 1: The minimum cost of a network of pipes connecting the fields, or -1 if no such network can be built.

样例输入

3 11
0 2
5 0
4 3

样例输出

46

提示

There are 3 fields, at locations (0,2), (5,0), and (4,3).  The contractor will only install pipes of cost at least 11.FJ cannot build a pipe between the fields at (4,3) and (5,0), since its cost would be only 10.  He therefore builds a pipe between (0,2) and (5,0) at cost 29, and a pipe between (0,2) and (4,3) at cost 17.

【分析】最小生成树(裸)。

#include <iostream>
#include <cstring>
#include <cstdio>
#include <algorithm>
#include <cmath>
#include <string>
#include <map>
#include <stack>
#include <queue>
#include <vector>
#define inf 0x3f3f3f3f
#define met(a,b) memset(a,b,sizeof a)
#define pb push_back
typedef long long ll;
using namespace std;
const int N = 4e3;
const int M = ;
int n,m,k,edg[N][N],lowcost[N],pre[N];
void Prim() {
for(int i=;i<=n;i++){
lowcost[i]=edg[][i];
}
lowcost[]=-;
int sum=;
for(int i=;i<n;i++){
int minn=;
for(int j=;j<=n;j++){
if(lowcost[j]!=-&&lowcost[j]<minn){
minn=lowcost[j];
k=j;
}
}
if(minn>=){
puts("-1");
return;
}
sum+=minn;
lowcost[k]=-;
for(int j=;j<=n;j++){
if(edg[j][k]<lowcost[j]){
lowcost[j]=edg[j][k];
}
}
}
printf("%d\n",sum);
}
int main()
{
for(int i=;i<N;i++)for(int j=;j<N;j++)edg[i][j]=;
int u,v,x[N],y[N];
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++){
scanf("%d%d",&x[i],&y[i]);
}
for(int i=;i<=n;i++){
for(int j=i+;j<=n;j++){
int s=(x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j]);
if(s>=m)edg[i][j]=edg[j][i]=s;
}
}
Prim();
return ;
}

(寒假集训)Watering the Fields (最小生成树)的更多相关文章

  1. P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  2. 洛谷 P2212 [USACO14MAR]浇地Watering the Fields 题解

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  3. BZOJ3479: [Usaco2014 Mar]Watering the Fields

    3479: [Usaco2014 Mar]Watering the Fields Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 81  Solved: ...

  4. BZOJ 3479: [Usaco2014 Mar]Watering the Fields( MST )

    MST...一开始没注意-1结果就WA了... ---------------------------------------------------------------------------- ...

  5. bzoj 3479: [Usaco2014 Mar]Watering the Fields

    3479: [Usaco2014 Mar]Watering the Fields Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 174  Solved ...

  6. CSU-ACM寒假集训选拔-入门题

    CSU-ACM寒假集训选拔-入门题 仅选择部分有价值的题 J(2165): 时间旅行 Description 假设 Bobo 位于时间轴(数轴)上 t0 点,他要使用时间机器回到区间 (0, h] 中 ...

  7. 洛谷——P2212 [USACO14MAR]浇地Watering the Fields

    P2212 [USACO14MAR]浇地Watering the Fields 题目描述 Due to a lack of rain, Farmer John wants to build an ir ...

  8. BZOJ 3479: [Usaco2014 Mar]Watering the Fields(最小生成树)

    这个= =最近刷的都是水题啊QAQ 排除掉不可能的边然后就最小生成树就行了= = CODE: #include<cstdio>#include<iostream>#includ ...

  9. 【2018寒假集训Day 8】【最小生成树】Prim和Kruskal算法模板

    Luogu最小生成树模板题 Prim 原理与dijkstra几乎相同,每次找最优的点,用这个点去松弛未连接的点,也就是用这个点去与未连接的点连接. #include<cstdio> #in ...

随机推荐

  1. c语言在windows下和Mac下的不同表现!

    最近给一个等级考试的C语言培训班上课,学生问起一些++的问题.让我好生为难.因为这些不同的编译器处理方式,在不同的系统下表现并不一致. 不管你洋洋洒洒论述多么一大篇,在事实面前就一下显得苍白了.虽然这 ...

  2. Robot Framwork +Selenium2环境搭建

    Robot Framwork +Selenium2环境搭建 安装python 参考文章http://blog.csdn.net/sealion111/article/details/78690686 ...

  3. Oracle 学习----:ora-00054 资源正忙 ,但指定以nowait方式获取资源 ,或者超时失效---解决方法

    1.查询被锁的会话ID: select session_id from v$locked_object;查询结果:SESSION_ID-------92.查询上面会话的详细信息: SELECT sid ...

  4. Abstract Factory 抽象工厂(创建型模式)

    1.常规的对象创建方法(以更换QQ空间主题为例) (这里的常规对象指的是由于业务需求,当前实例化的对象有可能被其他相似的对象(有着共同的特性)所取代,例如更换手机铃声:一首歌取代另一首歌(词,曲,和声 ...

  5. 原始套接字--arp相关

    arp请求示例 #include <stdio.h> #include <stdlib.h> #include <string.h> #include <un ...

  6. 爬虫:Scrapy11 - Logging

    Scrapy 提供了 log 功能.可以通过 scrapy.log 模块使用.当前底层实现使用了 Twisted logging,不过可能在之后会有所变化. log 服务必须通过显式调用 scrapy ...

  7. 在jsp页面中使用jstl标签

    第一步:引入标签库 <%@ taglib prefix="c" uri="http://java.sun.com/jstl/core_rt"%> 第 ...

  8. C# 访问修饰符internal的访问范围误区释疑

      一.前言                                               MSDN关于访问修饰符的访问级别解释: 访问修饰符是一些关键字,用于指定声明的成员或类型的可访 ...

  9. 哈夫曼树(C++优先队列的使用)

       给定n个权值作为n个叶子结点,构造一棵二叉树,若带权路径长度达到最小,称为哈夫曼树(Huffman Tree).哈夫曼树是带权路径长度最短的树,权值较大的结点离根较近.    构造 假设有n个权 ...

  10. win安装pycurl和linux安装pycurl

    1.win pip install wheel http://www.lfd.uci.edu/~gohlke/pythonlibs/ 下载对应的包: pip install e:\pycurl-7.4 ...