我对二分的理解:https://www.cnblogs.com/AKMer/p/9737477.html

题目传送门:https://www.lydsy.com/JudgeOnline/problem.php?id=5281

题目要求我们最大化\(\frac{\sum{t_i}}{\sum{w_i}}\),我们可以二分它的值\(x\)。如果存在某一种方案使得\(\frac{\sum{t_i}}{\sum{w_i}}>=x\)

,我们可以将其转化成有一种方案满足\(\sum{t_i}-\sum{w_i*x}>=0\)。于是乎我们就可以将\(t_i-w_i*x\)作为一只奶牛的权值,体重为空间来做背包,判断是否可以用\(W\)的体积背出大于等于\(0\)的权值。而且显然,\(t_i-w_i*x\)大于等于\(0\)的奶牛肯定会被选中,那么如果需要用到\(t_i-w_i*x\)为负数的奶牛,肯定是尽量少选。所以我们在背包时,如果从某个状态转以后体积大于\(W\)了,就可以停下转移了,因为再加也没用了。

时间复杂度:\(O(log1e9*n*W)\)

空间复杂度:\(O(n)\)

代码如下:

#include <cstdio>
#include <algorithm>
using namespace std; const double eps=1e-6,inf=1e9; int n,W;
int w[255],t[255];
double now[255],f[1005]; int read() {
int x=0,f=1;char ch=getchar();
for(;ch<'0'||ch>'9';ch=getchar())if(ch=='-')f=-1;
for(;ch>='0'&&ch<='9';ch=getchar())x=x*10+ch-'0';
return x*f;
} bool check(double limit) {
for(int i=1;i<=n;i++)
now[i]=1.0*t[i]-limit*w[i];//更改权值
for(int i=1;i<=W;i++)f[i]=-inf;
for(int i=1;i<=n;i++) {
for(int j=W;j>=W-w[i]&&~j;j--)
f[W]=max(f[W],f[j]+now[i]);//转移后大于W的只转移一次
for(int j=W-1;j>=w[i];j--)
f[j]=max(f[j],f[j-w[i]]+now[i]);//背包
}
return f[W]>eps;
} int main() {
n=read(),W=read();
for(int i=1;i<=n;i++)
w[i]=read(),t[i]=read();
double l=0,r=1e3;
while(l+eps<r) {
double mid=(l+r)/2;
if(check(mid))l=mid;//二分x,[0,l]都是可以凑出来的值
else r=mid;
}
printf("%d\n",(int)(l*1000));//l是最大的那一个
return 0;
}

BZOJ5281:[Usaco2018 Open]Talent Show的更多相关文章

  1. BZOJ5281: [Usaco2018 Open]Talent Show(01分数规划&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 166  Solved: 124[S ...

  2. BZOJ5281: [Usaco2018 Open]Talent Show 01分数规划+01背包

    Description FarmerJohn要带着他的N头奶牛,方便起见编号为1…N,到农业展览会上去,参加每年的达牛秀!他的第i头奶牛重 量为wi,才艺水平为ti,两者都是整数.在到达时,Farme ...

  3. bzoj 5281 [Usaco2018 Open]Talent Show——0/1分数规划

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=5281 把分子乘1000,就能在整数里做了. 这种水题也花了这么久…… #include< ...

  4. [Usaco2018 Open]Talent Show

    Description FarmerJohn要带着他的N头奶牛,方便起见编号为1-N,到农业展览会上去,参加每年的达牛秀!他的第i头奶牛重量为wi,才艺水平为ti,两者都是整数.在到达时,Farmer ...

  5. bzoj 5281: [Usaco2018 Open]Talent Show【dp】

    注意到sum_t比较小,所以设f[i][j]为选前i头牛,当前sum_t为j的最小sum_w值,转移是f[i][j]=min(f[i-1][j],f[i-1][j-t[i]]+w[i]),然后i维用滚 ...

  6. BZOJ 5281--[Usaco2018 Open]Talent Show(分数规划&单调队列&DP)

    5281: [Usaco2018 Open]Talent Show Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 79  Solved: 58[Sub ...

  7. vijos 1563 疯狂的方格取数

    P1653疯狂的方格取数 Accepted 标签:天才的talent[显示标签]   背景 Due to the talent of talent123,当talent123做完NOIP考了两次的二取 ...

  8. 01分数规划初探?!By cellur925

    都要\(NOIp\)了为啥我还在看这种玄学玩意..... \(01\)分数规划:这是一个问题模型\(qwq\),一般是在求\[\frac{\sum_{i=1}^{n} a_i*x_i}{\sum_{i ...

  9. java web 开发三剑客 -------电子书

    Internet,人们通常称为因特网,是当今世界上覆盖面最大和应用最广泛的网络.根据英语构词法,Internet是Inter + net,Inter-作为前缀在英语中表示“在一起,交互”,由此可知In ...

随机推荐

  1. 九度OJ 1192:回文字符串 (基础题)

    时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:3807 解决:1778 题目描述: 给出一个长度不超过1000的字符串,判断它是不是回文(顺读,逆读均相同)的. 输入: 输入包括一行字符串 ...

  2. SAP后台作业记录操作

    [转http://blog.163.com/liang_ce_521@126/blog/static/709202152013073376596/]后台作业信息存储在透明表TBTCP(批作业步骤概述) ...

  3. (转)Javascript模块化编程(三):require.js的用法

    这个系列的第一部分和第二部分,介绍了Javascript模块原型和理论概念,今天介绍如何将它们用于实战. 我采用的是一个非常流行的库require.js. 一.为什么要用require.js? 最早的 ...

  4. Python partial function 偏函数

    Partial function 偏函数是将所要承载的函数作为partial()函数的第一个参数,原函数的各个参数依次作为partial()函数后续的参数,除非使用关键字参数. 当函数的参数个数太多, ...

  5. ubuntu中文语言环境下把系统中文文件夹更改回英文文件夹

    更改系统语言为“汉语(中国)”后,在主文件夹下的系统默认文件夹名称也被改成了中文, 这样的话,使用命令行终端进行入文件夹很不方便,所以可以把文件夹名称从中文改回英文. 打开终端,在终端中输入命令:ex ...

  6. 左侧图片 右侧块的实现方法---解决3像素bug的一种解决方案,不用浮动用绝对定位和margin-left

    google的实现方式是: <div class="mw"> <a href="/" id="mlogo">  &l ...

  7. hd acm2035

    求A^B的最后三位数表示的整数.说明:A^B的含义是“A的B次方” 思路:后三位只跟后三位相乘有关,所以可以每乘一次都对1000取余. 代码: #include <stdio.h>#inc ...

  8. 20165101 学习基础和C语言基础调查

    学习基础和C语言基础调查 技能学习心得 看了15级学长学姐丰富的技能之后,我感到很惭愧.我的课外技能可以说是很糟糕.唱歌的话,小时候还可以用假声唱一下,变声之后就是高音上不去,低音下不来.体育更是差劲 ...

  9. 算法(Algorithms)第4版 练习 2.2.26

    在sort函数创建aux数组: package com.qiusongde; import edu.princeton.cs.algs4.In; import edu.princeton.cs.alg ...

  10. 分治思想求解X的M次幂方

    package main import ( "fmt" ) //递归形式分治求解 func power(x, m int) int { { } else { y := power( ...