一元多项式的表示及相加(抽象数据类型Polynomial的实现)
// c2-6.h 抽象数据类型Polynomial的实现(见图2.45)
typedef struct // 项的表示,多项式的项作为LinkList的数据元素
{
float coef; // 系数
int expn; // 指数
}term,ElemType; // 两个类型名:term用于本ADT,ElemType为LinkList的数据对象名
图246 是根据c2-5.h 和c2-6.h 定义的多项式7.3+22X7 的存储结构。
// bo2-7.cpp 多项式(存储结构由c2-6.h定义)的基本操作及算法2.22,2.23等(8个)
#include"c2-5.h"
#include"bo2-6.cpp"
typedef LinkList polynomial;
#define DestroyPolyn DestroyList // 与bo2-6.cpp中的函数同义不同名
#define PolynLength ListLength // 与bo2-6.cpp中的函数同义不同名
void OrderInsertMerge(LinkList &L,ElemType e,int(* compare)(term,term))
{ // 按有序判定函数compare()的约定,将值为e的结点插入或合并到升序链表L的适当位置
Position q,s;
if(LocateElem(L,e,q,compare)) // L中存在该指数项
{
q->data.coef+=e.coef; // 改变当前结点系数的值
if(!q->data.coef) // 系数为0
{ // 删除多项式L中当前结点
s=PriorPos(L,q); // s为当前结点的前驱
if(!s) // q无前驱
s=L.head;
DelFirst(L,s,q);
FreeNode(q);
}
}
else // 生成该指数项并插入链表
{
MakeNode(s,e); // 生成结点
InsFirst(L,q,s);
}
}
int cmp(term a,term b) // CreatPolyn()的实参
{ // 依a的指数值<、=或>b的指数值,分别返回-1、0或+1
if(a.expn==b.expn)
return 0;
else
return (a.expn-b.expn)/abs(a.expn-b.expn);
}
void CreatPolyn(polynomial &P,int m) // 算法2.22
{ // 输入m项的系数和指数,建立表示一元多项式的有序链表P
Position q,s;
term e;
int i;
InitList(P);
printf("请依次输入%d个系数,指数:\n",m);
for(i=1;i<=m;++i)
{ // 依次输入m个非零项(可按任意顺序)
scanf("%f,%d",&e.coef,&e.expn);
if(!LocateElem(P,e,q,cmp)) // 当前链表中不存在该指数项,cmp是实参
{
MakeNode(s,e); // 生成结点并插入链表
InsFirst(P,q,s);
}
}
}
void PrintPolyn(polynomial P)
{ // 打印输出一元多项式P
Link q;
q=P.head->next; // q指向第1个结点
printf(" 系数指数\n");
while(q)
{
printf("%f %d\n",q->data.coef,q->data.expn);
q=q->next;
}
}
void AddPolyn(polynomial &Pa,polynomial &Pb) // 算法2.23
{ // 多项式加法:Pa=Pa+Pb,并销毁一元多项式Pb
Position ha,hb,qa,qb;
term a,b;
ha=GetHead(Pa);
hb=GetHead(Pb); // ha和hb分别指向Pa和Pb的头结点
qa=NextPos(ha);
qb=NextPos(hb); // qa和qb分别指向Pa和Pb中当前结点(现为第1个结点)
while(!ListEmpty(Pa)&&!ListEmpty(Pb)&&qa)
{ // Pa和Pb均非空且ha没指向尾结点(qa!=0)
a=GetCurElem(qa);
b=GetCurElem(qb); // a和b为两表中当前比较元素
switch(cmp(a,b))
{
case -1:ha=qa; // 多项式Pa中当前结点的指数值小
qa=NextPos(ha); // ha和qa均向后移1个结点
break;
case 0: qa->data.coef+=qb->data.coef; // 两者的指数值相等,修改Pa当前结点的系数值
if(qa->data.coef==0) // 删除多项式Pa中当前结点
{
DelFirst(Pa,ha,qa);
FreeNode(qa);
}
else
ha=qa;
DelFirst(Pb,hb,qb);
FreeNode(qb);
qb=NextPos(hb);
qa=NextPos(ha);
break;
case 1: DelFirst(Pb,hb,qb); // 多项式Pb中当前结点的指数值小
InsFirst(Pa,ha,qb);
ha=ha->next;
qb=NextPos(hb);
}
}
if(!ListEmpty(Pb))
{
Pb.tail=hb;
Append(Pa,qb); // 链接Pb中剩余结点
}
DestroyPolyn(Pb); // 销毁Pb
}
void AddPolyn1(polynomial &Pa,polynomial &Pb)
{ // 另一种多项式加法的算法:Pa=Pa+Pb,并销毁一元多项式Pb
Position qb;
term b;
qb=GetHead(Pb); // qb指向Pb的头结点
qb=qb->next; // qb指向Pb的第1个结点
while(qb)
{
b=GetCurElem(qb);
OrderInsertMerge(Pa,b,cmp);
qb=qb->next;
}
DestroyPolyn(Pb); // 销毁Pb
}
void Opposite(polynomial Pa)
{ // 一元多项式Pa系数取反
Position p;
p=Pa.head;
while(p->next)
{
p=p->next;
p->data.coef*=-1;
}
}
void SubtractPolyn(polynomial &Pa,polynomial &Pb)
{ // 多项式减法:Pa=Pa-Pb,并销毁一元多项式Pb
Opposite(Pb);
AddPolyn(Pa,Pb);
}
void MultiplyPolyn(polynomial &Pa,polynomial &Pb)
{ // 多项式乘法:Pa=Pa×Pb,并销毁一元多项式Pb
polynomial Pc;
Position qa,qb;
term a,b,c;
InitList(Pc);
qa=GetHead(Pa);
qa=qa->next;
while(qa)
{
a=GetCurElem(qa);
qb=GetHead(Pb);
qb=qb->next;
while(qb)
{
b=GetCurElem(qb);
c.coef=a.coef*b.coef;
c.expn=a.expn+b.expn;
OrderInsertMerge(Pc,c,cmp);
qb=qb->next;
}
qa=qa->next;
}
DestroyPolyn(Pb); // 销毁Pb
ClearList(Pa); // 将Pa重置为空表
Pa.head=Pc.head;
Pa.tail=Pc.tail;
Pa.len=Pc.len;
}
// main2-7.cpp 检验bo2-7.cpp的主程序
#include"c1.h"
#include"c2-6.h"
#include"bo2-7.cpp"
void main()
{
polynomial p,q;
int m;
printf("请输入第1个一元多项式的非零项的个数:");
scanf("%d",&m);
CreatPolyn(p,m);
printf("请输入第2个一元多项式的非零项的个数:");
scanf("%d",&m);
CreatPolyn(q,m);
AddPolyn(p,q);
printf("2个一元多项式相加的结果:\n");
PrintPolyn(p);
printf("请输入第3个一元多项式的非零项的个数:");
scanf("%d",&m);
CreatPolyn(q,m);
AddPolyn1(p,q);
printf("2个一元多项式相加的结果(另一种方法):\n");
PrintPolyn(p);
printf("请输入第4个一元多项式的非零项的个数:");
scanf("%d",&m);
CreatPolyn(q,m);
SubtractPolyn(p,q);
printf("2个一元多项式相减的结果:\n");
PrintPolyn(p);
printf("请输入第5个一元多项式的非零项的个数:");
scanf("%d",&m);
CreatPolyn(q,m);
MultiplyPolyn(p,q);
printf("2个一元多项式相乘的结果:\n");
PrintPolyn(p);
DestroyPolyn(p);
}
运行结果如下:
一元多项式的表示及相加(抽象数据类型Polynomial的实现)的更多相关文章
- 数据结构算法C语言实现(六)---2.4一元多项式的表示及相加
一.简述 利用链表表示稀疏多项式,并基于之前的一些操作(编程实现上还是有所不同的)组合新的操作实现一元多项式的表示及相加. 二.ADT 抽象数据类型一元多项式的定义 ADT Polyomail{ 数据 ...
- Week1绪论--抽象数据类型
一.作业题目 1.构造有理数T,元素e1,e2分别被赋以分子.分母值 2.销毁有理数T 3.用e(引用类型参数)返回有理数T的分子或分母,当入参i为1时返回分子, i为2是返回分母. 4.将有理数T的 ...
- 抽象数据类型ADT
ADT(Abstract Data Type) 类型由什么组成? 一个类型(type)指定两类信息,一个属性集和一个操作集. 假设要定义一个新的数据类型.首先,要提供存储数据的方式,可能是通过设计一个 ...
- C语言泛型编程--抽象数据类型
一.数据类型: 在任何编程语言中,数据类型作为一个整体,ANSI-C包含的类型为:int.double.char……,程序员很少满意语言本身提供的数据类型,一个简单的办法就是构造类似:array.st ...
- ORACLE抽象数据类型
ORACLE抽象数据类型 *抽象数据类型*/1,抽象数据类型 概念包含一个或多个子类型的数据类型不局限于ORACLE的标准数据类型可以用于其他数据类型中 2,创建抽象数据类型 的语法(必须用NOT F ...
- ADT(abstract data types)抽象数据类型
1.What is it? An abstract data type is a set of objects together with a set of operations. 抽象数据类型是带有 ...
- 数据结构 集合_集合(数学)抽象数据类型的C语言实现
链表是实现集合的一种理想的方式.将List以typedef的方式重命名为Set.这样做能保留链表简洁的特性,还能使集合具有了一些多态的特性. 使用这种方法的最大好处就是可以使用list_next来遍历 ...
- 【Python&数据结构】 抽象数据类型 Python类机制和异常
这篇是<数据结构与算法Python语言描述>的笔记,但是大头在Python类机制和面向对象编程的说明上面.我也不知道该放什么分类了..总之之前也没怎么认真接触过基于类而不是独立函数的Pyt ...
- DS博客作业01--日期抽象数据类型设计与实现
1.思维导图及学习体会 1.1第一章绪论知识点思维导图 1.2 学习体会 这次博客园和大作业是我在编程学习中的有意义的进步,第一次尝试使用vs,并且通过同学的一些网站的推荐,和热心同学的帮忙,简单学会 ...
随机推荐
- my share
网盘一: username:3a1bd0f6634d72a0423aa21c7d2dee1a password:adaa0dfa36f537a4469fcc6e78823e1c 网盘二: userna ...
- python的多继承C3(mro)算法
多继承的继承顺序按照C3算法进行顺序继承 例一 按照深度A类从左往右有三条可继承的"路" 先按照深度优先的算法,将每一路的每一个节点加到列表中 B = [B,D,F,H] C = ...
- tcl之文件操作
- 关于Mysql唯一索引的操作方法(添加删除)
首先我们查看一下News数据表的索引信息 使用命令 show index from ‘数据表名称’; 目前数据表中仅有一个主键索引 继续,我们给news表添加两个唯一索引(两种方法) 方法一 ...
- Java8 新API读取文件内容
import java.io.IOException;import java.nio.charset.Charset;import java.nio.file.Files;import java.ni ...
- python os模块练习题
# 1.获取某个文件所在目录的上一级目录. # 例如'D:\python\projects\test19.py'目录的结果 :D:\python\projects # 方法1 # path = os. ...
- Java线程---简介
实现方式 在java中线程有两种实现方式: 1.继承thread类 2.实现runnable接口 Thread类 Thread类时在java.lang包中定义的,继承thread类必须重写run()方 ...
- sublimeText3快捷键
Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴 ...
- Python语法之com[1][:-7]
strCom = com[0] + ": " + com[1][:-7] 如上应该是一个字符串合成,最后的[1][:-7],我理解是去除com[1]的最后7个字符. 比如com[0 ...
- loj2100 「TJOI2015」线性代数
先推公式,推出个这,然后因为是 \(0/1\) 矩阵,选一个有损耗,两个一组有加成,就想到了最大权闭合子图,(飞行计划问题) #include <iostream> #include &l ...