Machine Learning & Statistical Learning (机器学习 & 统计学习)  网址:http://cran.r-project.org/web/views/MachineLearning.html维护人员:Torsten Hothorn  版本:2008-02-18 18:19:21  翻译:R-fox, 2008-03-18 
机器学习是计算机科学和统计学的边缘交叉领域,R关于机器学习的包主要包括以下几个方面:
  1)神经网络(Neural Networks):  nnet包执行单隐层前馈神经网络,nnet是VR包的一部分(http://cran.r-project.org/web/packages/VR/index.html)。
  2)递归拆分(Recursive Partitioning):  递归拆分利用树形结构模型,来做回归、分类和生存分析,主要在rpart包(http://cran.r-project.org/web/packages/rpart/index.html)和tree包(http://cran.r-project.org/web/packages/tree/index.html)里执行,尤其推荐rpart包。Weka里也有这样的递归拆分法,如:J4.8, C4.5, M5,包Rweka提供了R与Weka的函数的接口(http://cran.r-project.org/web/packages/RWeka/index.html)。  party包提供两类递归拆分算法,能做到无偏的变量选择和停止标准:函数ctree()用非参条件推断法检测自变量和因变量的关系;而函数mob()能用来建立参数模型(http://cran.r-project.org/web/packages/party/index.html)。另外,party包里也提供二分支树和节点分布的可视化展示。  mvpart包是rpart的改进包,处理多元因变量的问题(http://cran.r-project.org/web/packages/mvpart/index.html)。rpart.permutation包用置换法(permutation)评估树的有效性(http://cran.r-project.org/web/packages/rpart.permutation/index.html)。knnTree包建立一个分类树,每个叶子节点是一个knn分类器(http://cran.r-project.org/web/packages/knnTree/index.html)。LogicReg包做逻辑回归分析,针对大多数自变量是二元变量的情况(http://cran.r-project.org/web/packages/LogicReg/index.html)。maptree包(http://cran.r-project.org/web/packages/maptree/index.html)和pinktoe包(http://cran.r-project.org/web/packages/pinktoe/index.html)提供树结构的可视化函数。
  3)随机森林(Random Forests):  randomForest 包提供了用随机森林做回归和分类的函数(http://cran.r-project.org/web/packages/randomForest/index.html)。ipred包用bagging的思想做回归,分类和生存分析,组合多个模型(http://cran.r-project.org/web/packages/ipred/index.html)。party包也提供了基于条件推断树的随机森林法(http://cran.r-project.org/web/packages/party/index.html)。varSelRF包用随机森林法做变量选择(http://cran.r-project.org/web/packages/varSelRF/index.html)。 
4)Regularized and Shrinkage Methods:  lasso2包(http://cran.r-project.org/web/packages/lasso2/index.html)和lars包(http://cran.r-project.org/web/packages/lars/index.html)可以执行参数受到某些限制的回归模型。elasticnet包可计算所有的收缩参数(http://cran.r-project.org/web/packages/elasticnet/index.html)。glmpath包可以得到广义线性模型和COX模型的L1 regularization path(http://cran.r-project.org/web/packages/glmpath/index.html)。penalized包执行lasso (L1) 和ridge (L2)惩罚回归模型(penalized regression models)(http://cran.r-project.org/web/packages/penalized/index.html)。pamr包执行缩小重心分类法(shrunken centroids classifier)(http://cran.r-project.org/web/packages/pamr/index.html)。earth包可做多元自适应样条回归(multivariate adaptive regression splines)(http://cran.r-project.org/web/packages/earth/index.html)。 
5)Boosting :  gbm包(http://cran.r-project.org/web/packages/gbm/index.html)和boost包(http://cran.r-project.org/web/packages/boost/index.html)执行多种多样的梯度boosting算法,gbm包做基于树的梯度下降boosting,boost包包括LogitBoost和L2Boost。GAMMoost包提供基于boosting的广义相加模型(generalized additive models)的程序(http://cran.r-project.org/web/packages/GAMMoost/index.html)。mboost包做基于模型的boosting(http://cran.r-project.org/web/packages/mboost/index.html)。
  6)支持向量机(Support Vector Machines):  e1071包的svm()函数提供R和LIBSVM的接口 (http://cran.r-project.org/web/packages/e1071/index.html)。kernlab包为基于核函数的学习方法提供了一个灵活的框架,包括SVM、RVM……(http://cran.r-project.org/web/packages/kernlab/index.html) 。klaR 包提供了R和SVMlight的接口(http://cran.r-project.org/web/packages/klaR/index.html)。 
7)贝叶斯方法(Bayesian Methods):  BayesTree包执行Bayesian Additive Regression Trees (BART)算法(http://cran.r-project.org/web/packages/BayesTree/index.htmlhttp://www-stat.wharton.upenn.edu/~edgeorge/Research_papers/BART%206--06.pdf)。tgp包做Bayesian半参数非线性回归(Bayesian nonstationary, semiparametric nonlinear regression)(http://cran.r-project.org/web/packages/tgp/index.html)。 
8)基于遗传算法的最优化(Optimization using Genetic Algorithms):  gafit包(http://cran.r-project.org/web/packages/gafit/index.html)和rgenoud包(http://cran.r-project.org/web/packages/rgenoud/index.html)提供基于遗传算法的最优化程序。 
9)关联规则(Association Rules):  arules包提供了有效处理稀疏二元数据的数据结构,而且提供函数执Apriori和Eclat算法挖掘频繁项集、最大频繁项集、闭频繁项集和关联规则(http://cran.r-project.org/web/packages/arules/index.html)。 
10)模型选择和确认(Model selection and validation):  e1071包的tune()函数在指定的范围内选取合适的参数(http://cran.r-project.org/web/packages/e1071/index.html)。ipred包的errorest()函数用重抽样的方法(交叉验证,bootstrap)估计分类错误率(http://cran.r-project.org/web/packages/ipred/index.html)。svmpath包里的函数可用来选取支持向量机的cost参数C(http://cran.r-project.org/web/packages/svmpath/index.html)。ROCR包提供了可视化分类器执行效果的函数,如画ROC曲线(http://cran.r-project.org/web/packages/ROCR/index.html)。caret包供了各种建立预测模型的函数,包括参数选择和重要性量度(http://cran.r-project.org/web/packages/caret/index.html)。caretLSF包(http://cran.r-project.org/web/packages/caretLSF/index.html)和caretNWS(http://cran.r-project.org/web/packages/caretNWS/index.html)包提供了与caret包类似的功能。 
11)统计学习基础(Elements of Statistical Learning):  书《The Elements of Statistical Learning: Data Mining, Inference, and Prediction 》(http://www-stat.stanford.edu/~tibs/ElemStatLearn/)里的数据集、函数、例子都被打包放在ElemStatLearn包里(http://cran.r-project.org/web/packages/ElemStatLearn/index.html)。

R语言中的机器学习包的更多相关文章

  1. R语言中的数据处理包dplyr、tidyr笔记

    R语言中的数据处理包dplyr.tidyr笔记   dplyr包是Hadley Wickham的新作,主要用于数据清洗和整理,该包专注dataframe数据格式,从而大幅提高了数据处理速度,并且提供了 ...

  2. r语言,安装外部包 警告: 无法将临时安装

    安装R语言中的外部包时,出现错误提示 试开URL’https://mirrors.tuna.tsinghua.edu.cn/CRAN/bin/windows/contrib/3.3/ggplot2_2 ...

  3. 机器学习:R语言中如何使用最小二乘法

    详细内容见上一篇文章:http://www.cnblogs.com/lc1217/p/6514734.html 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题. 代码如下:(数据同 ...

  4. R语言学习笔记-机器学习1-3章

    在折腾完爬虫还有一些感兴趣的内容后,我最近在看用R语言进行简单机器学习的知识,主要参考了<机器学习-实用案例解析>这本书. 这本书是目前市面少有的,纯粹以R语言为基础讲解的机器学习知识,书 ...

  5. R+openNLP︱openNLP的六大可实现功能及其在R语言中的应用

    每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- openNLP是NLP中比较好的开源工具,R语 ...

  6. R语言中样本平衡的几种方法

    R语言中样本平衡的几种方法 在对不平衡的分类数据集进行建模时,机器学习算法可能并不稳定,其预测结果甚至可能是有偏的,而预测精度此时也变得带有误导性.在不平衡的数据中,任一算法都没法从样本量少的类中获取 ...

  7. R语言中的字符处理

    R语言中的字符处理 (2011-07-10 22:29:48) 转载▼ 标签: r语言 字符处理 字符串 连接 分割 分类: R R的字符串处理能力还是很强大的,具体有base包的几个函数和strin ...

  8. R语言中动态安装库

    R语言中动态安装库 在一个R脚本中,我们使用了某些library,但是发现运行环境中没有这个library,如果能检测一下有没有这个包,没有就自动安装该多好.而R中非常方便地支持这些,只要联网. 代码 ...

  9. R语言中如何使用最小二乘法

    R语言中如何使用最小二乘法 这里只是介绍下R语言中如何使用最小二乘法解决一次函数的线性回归问题.         代码如下: > x<-c(6.19,2.51,7.29,7.01,5.7, ...

随机推荐

  1. ASP.NET与json对象互转

    这两天写这个xml跟json的读写,心累啊,也不是很理解,请大家多指教 首先来个热身菜做一个简单的解析json 在script里写一个简单的弹窗效果 <script> //script里简 ...

  2. 3.tomcat

    1.进入网站http://www.apache.org 2.选择 3.关闭防火墙才可以让别人访问自己

  3. linux 下svn同步更新钩子

    svn服务器搭建:https://www.linuxidc.com/Linux/2017-05/144254.htm SVN版本库中的一个项目:/svn/repositories/test/ 网站目录 ...

  4. 2295: KMP模式匹配 一(串)

    2295: KMP模式匹配 一(串) 时间限制: 1 Sec  内存限制: 128 MB提交: 210  解决: 97[提交][状态][讨论版][命题人:外部导入] 题目描述 求子串的next值,用n ...

  5. AI-Info-Micron-Insight:V2X 自主性:帮助减少事故、排放和交通拥堵

    ylbtech-AI-Info-Micron-Insight:V2X 自主性:帮助减少事故.排放和交通拥堵 1.返回顶部 1. V2X 自主性:帮助减少事故.排放和交通拥堵 一辆汽车冲到你的车道上.晚 ...

  6. maven解析xml+测试test+注解

    条件:maven项目 测试图: 创建maven项目,在maven项目中scr目录下有main.test(没有就创建) 一.解析XML文件方式 在main目录下有java.resources.webap ...

  7. splay版

    指针是个好东西 不过就是得判空 还有别忘传引用(其实应该都传引用) #include<cstdio> #include<algorithm> #include<iostr ...

  8. python第一章练习题

    本章总节 练习题 1.简述编译型与解释型语言的区别,且分别列出你知道的哪些语言属于编译型,哪些属于解释 编译型:把源代码编译成机器语言的可执行文件,程序执行的时候执行可执行文件即可. 优点:程序执行不 ...

  9. 【学时总结】◆学时·V◆ 逆元法

    ◆学时·V◆ 逆元法 □算法概述□ 逆元运算是模运算中的一个技巧,一般用于解决模运算的除法问题.模运算对于加.减.乘是有封闭性的,即 (a±b)%m=a%m±b%m,以及 (a×b)%m=a%m×b% ...

  10. poj_1730_Perfect Pth Powers

    We say that x is a perfect square if, for some integer b, x = b 2. Similarly, x is a perfect cube if ...