MapReduce小文件处理之CombineFileInputFormat实现
在MapReduce使用过程中。一般会遇到输入文件特别小(几百KB、几十MB)。而Hadoop默认会为每一个文件向yarn申请一个container启动map,container的启动关闭是很耗时的。
Hadoop提供了CombineFileInputFormat。一个抽象类。作用是将多个小文件合并到一个map中,我们仅仅需实现三个类:
CompressedCombineFileInputFormat
CompressedCombineFileRecordReader
CompressedCombineFileWritable
maven
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-client</artifactId>
<version>2.5.0-cdh5.2.1</version>
</dependency>
CompressedCombineFileInputFormat.java
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.JobContext;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.CombineFileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.CombineFileRecordReader;
import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit; import java.io.IOException; public class CompressedCombineFileInputFormat
extends CombineFileInputFormat<CompressedCombineFileWritable, Text> { public CompressedCombineFileInputFormat() {
super(); } public RecordReader<CompressedCombineFileWritable, Text>
createRecordReader(InputSplit split,
TaskAttemptContext context) throws IOException {
return new
CombineFileRecordReader<CompressedCombineFileWritable,
Text>((CombineFileSplit) split, context,
CompressedCombineFileRecordReader.class);
} @Override
protected boolean isSplitable(JobContext context, Path file) {
return false;
} }
CompressedCombineFileRecordReader.java
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.CompressionCodecFactory;
import org.apache.hadoop.mapreduce.InputSplit;
import org.apache.hadoop.mapreduce.RecordReader;
import org.apache.hadoop.mapreduce.TaskAttemptContext;
import org.apache.hadoop.mapreduce.lib.input.CombineFileSplit;
import org.apache.hadoop.util.LineReader; import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream; public class CompressedCombineFileRecordReader
extends RecordReader<CompressedCombineFileWritable, Text> { private long startOffset;
private long end;
private long pos;
private FileSystem fs;
private Path path;
private Path dPath;
private CompressedCombineFileWritable key = new CompressedCombineFileWritable();
private Text value;
private long rlength;
private FSDataInputStream fileIn;
private LineReader reader; public CompressedCombineFileRecordReader(CombineFileSplit split,
TaskAttemptContext context, Integer index) throws IOException { Configuration currentConf = context.getConfiguration();
this.path = split.getPath(index);
boolean isCompressed = findCodec(currentConf, path);
if (isCompressed)
codecWiseDecompress(context.getConfiguration()); fs = this.path.getFileSystem(currentConf); this.startOffset = split.getOffset(index); if (isCompressed) {
this.end = startOffset + rlength;
} else {
this.end = startOffset + split.getLength(index);
dPath = path;
} boolean skipFirstLine = false; fileIn = fs.open(dPath); if (isCompressed) fs.deleteOnExit(dPath); if (startOffset != 0) {
skipFirstLine = true;
--startOffset;
fileIn.seek(startOffset);
}
reader = new LineReader(fileIn);
if (skipFirstLine) {
startOffset += reader.readLine(new Text(), 0,
(int) Math.min((long) Integer.MAX_VALUE, end - startOffset));
}
this.pos = startOffset;
} public void initialize(InputSplit split, TaskAttemptContext context)
throws IOException, InterruptedException {
} public void close() throws IOException {
} public float getProgress() throws IOException {
if (startOffset == end) {
return 0.0f;
} else {
return Math.min(1.0f, (pos - startOffset) / (float)
(end - startOffset));
}
} public boolean nextKeyValue() throws IOException {
if (key.fileName == null) {
key = new CompressedCombineFileWritable();
key.fileName = dPath.getName();
}
key.offset = pos;
if (value == null) {
value = new Text();
}
int newSize = 0;
if (pos < end) {
newSize = reader.readLine(value);
pos += newSize;
}
if (newSize == 0) {
key = null;
value = null;
return false;
} else {
return true;
}
} public CompressedCombineFileWritable getCurrentKey()
throws IOException, InterruptedException {
return key;
} public Text getCurrentValue() throws IOException, InterruptedException {
return value;
} private void codecWiseDecompress(Configuration conf) throws IOException { CompressionCodecFactory factory = new CompressionCodecFactory(conf);
CompressionCodec codec = factory.getCodec(path); if (codec == null) {
System.err.println("No Codec Found For " + path);
System.exit(1);
} String outputUri =
CompressionCodecFactory.removeSuffix(path.toString(),
codec.getDefaultExtension());
dPath = new Path(outputUri); InputStream in = null;
OutputStream out = null;
fs = this.path.getFileSystem(conf); try {
in = codec.createInputStream(fs.open(path));
out = fs.create(dPath);
IOUtils.copyBytes(in, out, conf);
} finally {
IOUtils.closeStream(in);
IOUtils.closeStream(out);
rlength = fs.getFileStatus(dPath).getLen();
}
} private boolean findCodec(Configuration conf, Path p) { CompressionCodecFactory factory = new CompressionCodecFactory(conf);
CompressionCodec codec = factory.getCodec(path); if (codec == null)
return false;
else
return true; } }
CompressedCombineFileWritable.java
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.WritableComparable; import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException; public class CompressedCombineFileWritable implements WritableComparable { public long offset;
public String fileName; public CompressedCombineFileWritable() {
super();
} public CompressedCombineFileWritable(long offset, String fileName) {
super();
this.offset = offset;
this.fileName = fileName;
} public void readFields(DataInput in) throws IOException {
this.offset = in.readLong();
this.fileName = Text.readString(in);
} public void write(DataOutput out) throws IOException {
out.writeLong(offset);
Text.writeString(out, fileName);
} public int compareTo(Object o) {
CompressedCombineFileWritable that = (CompressedCombineFileWritable) o; int f = this.fileName.compareTo(that.fileName);
if (f == 0) {
return (int) Math.signum((double) (this.offset - that.offset));
}
return f;
} @Override
public boolean equals(Object obj) {
if (obj instanceof CompressedCombineFileWritable)
return this.compareTo(obj) == 0;
return false;
} @Override
public int hashCode() { final int hashPrime = 47;
int hash = 13;
hash = hashPrime * hash + (this.fileName != null ? this.fileName.hashCode() : 0);
hash = hashPrime * hash + (int) (this.offset ^ (this.offset >>> 16)); return hash;
} @Override
public String toString() {
return this.fileName + "-" + this.offset;
} }
MR測试类
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.compress.CompressionCodec;
import org.apache.hadoop.io.compress.GzipCodec;
import org.apache.hadoop.mapred.lib.CombineFileInputFormat;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.MRJobConfig;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.reduce.IntSumReducer;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner; import java.io.IOException;
import java.util.StringTokenizer; public class CFWordCount extends Configured implements Tool { /**
* @param args
* @throws Exception
*/
public static void main(String[] args) throws Exception {
System.exit(ToolRunner.run(new Configuration(), new CFWordCount(), args));
} public int run(String[] args) throws Exception {
Configuration conf = getConf();
conf.setLong(CombineFileInputFormat.SPLIT_MAXSIZE, 128 * 1024 * 1024);
conf.setBoolean(MRJobConfig.MAP_OUTPUT_COMPRESS, true);
conf.setClass(MRJobConfig.MAP_OUTPUT_COMPRESS_CODEC, GzipCodec.class, CompressionCodec.class);
Job job = new Job(conf);
job.setJobName("CombineFile Demo");
job.setJarByClass(CFWordCount.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
job.setInputFormatClass(CompressedCombineFileInputFormat.class);
job.setMapperClass(TestMapper.class);
job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(IntWritable.class);
job.setReducerClass(IntSumReducer.class);
job.setNumReduceTasks(1);
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.submit();
job.waitForCompletion(true); return 0;
} public static class TestMapper extends Mapper<CompressedCombineFileWritable, Text, Text, IntWritable> {
private Text txt = new Text();
private IntWritable count = new IntWritable(1); public void map(CompressedCombineFileWritable key, Text val, Context context) throws IOException, InterruptedException {
StringTokenizer st = new StringTokenizer(val.toString());
while (st.hasMoreTokens()) {
txt.set(st.nextToken());
context.write(txt, count);
}
}
}
}
注意:使用CombineFileInputFormat过程中发现不管小文件积累到多大,甚至超过HDFS BlockSize后。仍然仅仅有一个map split,查看 hadoop 的源代码发现,使用CombineFileInputFormat时。假设没有显示指定CombineFileInputFormat.SPLIT_MAXSIZE,默认不会切分map split,解决方法例如以下:
conf.setLong(CombineFileInputFormat.SPLIT_MAXSIZE, 128 * 1024 * 1024);
MapReduce小文件处理之CombineFileInputFormat实现的更多相关文章
- MapReduce小文件优化与分区
一.小文件优化 1.Mapper类 package com.css.combine; import java.io.IOException; import org.apache.hadoop.io.I ...
- Hadoop MapReduce编程 API入门系列之小文件合并(二十九)
不多说,直接上代码. Hadoop 自身提供了几种机制来解决相关的问题,包括HAR,SequeueFile和CombineFileInputFormat. Hadoop 自身提供的几种小文件合并机制 ...
- [大牛翻译系列]Hadoop(17)MapReduce 文件处理:小文件
5.1 小文件 大数据这个概念似乎意味着处理GB级乃至更大的文件.实际上大数据可以是大量的小文件.比如说,日志文件通常增长到MB级时就会存档.这一节中将介绍在HDFS中有效地处理小文件的技术. 技术2 ...
- mapreduce 关于小文件导致任务缓慢的问题
小文件导致任务执行缓慢的原因: 1.很容易想到的是map task 任务启动太多,而每个文件的实际输入量很小,所以导致了任务缓慢 这个可以通过 CombineTextInputFormat,解决,主要 ...
- [转载]mapreduce合并小文件成sequencefile
mapreduce合并小文件成sequencefile http://blog.csdn.net/xiao_jun_0820/article/details/42747537
- 第3节 mapreduce高级:5、6、通过inputformat实现小文件合并成为sequenceFile格式
1.1 需求 无论hdfs还是mapreduce,对于小文件都有损效率,实践中,又难免面临处理大量小文件的场景,此时,就需要有相应解决方案 1.2 分析 小文件的优化无非以下几种方式: 1. 在数据 ...
- Hadoop对小文件的解决方式
小文件指的是那些size比HDFS的block size(默认64M)小的多的文件.不论什么一个文件,文件夹和block,在HDFS中都会被表示为一个object存储在namenode的内存中, 每一 ...
- 基于Hadoop Sequencefile的小文件解决方案
一.概述 小文件是指文件size小于HDFS上block大小的文件.这样的文件会给hadoop的扩展性和性能带来严重问题.首先,在HDFS中,任何block,文件或者目录在内存中均以对象的形式存储,每 ...
- Hadoop小文件存储方案
原文地址:https://www.cnblogs.com/ballwql/p/8944025.html HDFS总体架构 在介绍文件存储方案之前,我觉得有必要先介绍下关于HDFS存储架构方面的一些知识 ...
随机推荐
- [BZOJ1997][Hnoi2010]Planar 2-sat (联通分量) 平面图
1997: [Hnoi2010]Planar Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 2317 Solved: 850[Submit][Stat ...
- POJ 3977:Subset(折半枚举+二分)
[题目链接] http://poj.org/problem?id=3977 [题目大意] 在n个数(n<36)中选取一些数,使得其和的绝对值最小. [题解] 因为枚举所有数选或者不选,复杂度太高 ...
- [JOISC2016]サンドイッチ
题目大意: 一个$n\times m(n,m\leq400)$的网格图中,每个格子上放了两个三明治,摆放的方式分为'N'和'Z'两种.一个三明治可以被拿走当且仅当与该三明治的两条直角边相邻的三明治均被 ...
- tiny4412学习之u-boot启动过程
这个文档简要分析了tiny4412自带的u-boot的启动过程,这个u-boot启用了mmu,并且命令的接收和执行方式跟以前的不同. 文档下载地址: http://pan.baidu.com/s/1s ...
- JAVA常见算法题(二十二)
package com.xiaowu.demo; //利用递归方法求5!. public class Demo22 { public static void main(String[] args) { ...
- python良好的编程习惯
良好的编程习惯 2.1 在程序中是用丰富的注释,注释有助于其他程序员理解程序,有助于程序调试(发现和排除程序中的错误),并列出有用的信息.以后修改或更新代码时,注释还有助于理解当初自己编写的程序 2. ...
- 速查笔记(Linux Shell编程<下>)
转载自: http://www.cnblogs.com/stephen-liu74/archive/2011/11/04/2228133.html 五.BASH SHELL编程: 1. 初始化顺 ...
- ASP.NET MVC学习---(二)EF文件结构
之前已经简单的介绍过ORM框架和EF 也了解了EF的种种优点 那么这个EF到底长啥样子都还没见过呢 别着急 接下来,科学教育频道--走近科学 带你走进EF的内心世界~ 那么接下来就是~ 等等等等... ...
- 一个对比各种开源库的网站 libhunt
https://www.libhunt.com/ https://github.com/LibHunt/awesome-javascript
- ARM指令中的函数调用
1. 重要寄存器 SP 栈指针, 每一种异常模式都有其自己独立的r13,它通常指向异常模式所专用的堆栈,也就是说五种异常模式.非异常模式(用户模式和系统模式),都有各自独立的堆栈,用不同的堆栈指针来 ...