POJ3696 The Luckiest Number 欧拉定理
昨天终于把欧拉定理的证明看明白了。。。于是兴冲冲地写了2道题,发现自己啥都不会qwq
题意:给定一个正整数L<=2E+9,求至少多少个8连在一起组成正整数是L的倍数。
这很有意思么。。。
首先,连续的8可表示为:8*(10^x-1)/9;
那么就是L|8*(10^x-1)/9 => 9*L|8*(10^x-1) ,求最小的x;
我们设d=gcd(L,8)
则9*L/d | 8/d*(10^x-1),因为此时9*L/d 和 8/d 互质,所以9*L/d | 10^x-1,所以 10^x ≡ 1 (mod 9*L/d);
然后要证明一个结论:a^x ≡ 1 (mod n)的最小正整数解x0能整除φ(n)
证明:
反证:设不能整除,则设φ(n)=q*x0+r;(1<=r<x0)
因为a^x0 ≡ 1 (mod n),所以a^(q*x0) ≡ 1(mod n)
又因为a^φ(n) ≡ 1 (mod n),所以a^r ≡ 1 (mod n)
因为r<x0,所以假设不成立;
证毕。
所以我们枚举每个φ(9*L/d) 的约数,用快速幂判断就好了。
#include<cstdio>
#include<iostream>
#include<algorithm>
#define ll long long
#define R register ll
using namespace std;
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
ll a[],n,ans;
inline ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
inline ll phi(ll n) {
R m=n; for(R i=;i*i<=n;++i) if(n%i==) {
m=m/i*(i-);
while(n%i==) n/=i;
} if(n>) m=m/n*(n-); return m;
}
inline ll mul(ll a,ll b) {
a%=n,b%=n; R c=(long double)a*b/n;
R ans=a*b-c*n; if(ans<) ans+=n;
if(ans>=n) ans-=n; return ans;
}
inline ll qpow(ll a,ll p) { R ret=;
for(;p;p>>=,a=mul(a,a)) if(p&) ret=mul(ret,a); return ret;
}
signed main() { R t=;
while(n=g(),n!=) { //cout<<n<<endl;
n=*n/gcd(,n);
printf("Case %d: ",++t);
if(gcd(,n)==) {
R p=phi(n),cnt=; //cout<<"PHI: "<<p<<endl;
for(R i=;i*i<=p;++i) if(p%i==) {
a[++cnt]=i;
if(i*i!=p) a[++cnt]=p/i;
} sort(a+,a+cnt+); R i;
for(i=;i<=cnt;++i) if(qpow(,a[i])==) break;
printf("%lld\n",a[i]);
} else printf("0\n");
}
}
2019.05.11
POJ3696 The Luckiest Number 欧拉定理的更多相关文章
- POJ3696 The Luckiest number
题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...
- POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)
Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...
- [POJ3696]The Luckiest number(数论)
题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...
- POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】
一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...
- poj 3696 The Luckiest Number
The Luckiest Number 题目大意:给你一个int范围内的正整数n,求这样的最小的x,使得:连续的x个8可以被n整除. 注释:如果无解输出0.poj多组数据,第i组数据前面加上Case ...
- poj_3696_The Luckiest number
Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...
- HDU 2462 The Luckiest number
The Luckiest number Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Ori ...
- The Luckiest number(hdu2462)
The Luckiest number Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Othe ...
- 「POJ3696」The Luckiest number【数论,欧拉函数】
# 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\ ...
随机推荐
- poj3252 Round Numbers[数位DP]
地址 拆成2进制位做dp记搜就行了,带一下前导0,将0和1的个数带到状态里面,每种0和1的个数讨论一下,累加即可. WA记录:line29. #include<iostream> #inc ...
- CH6B12 最优高铁环
6B12 最优高铁环 0x6B「图论」练习 背景 幻影国建成了当今世界上最先进的高铁,该国高铁分为以下几类: S---高速光子动力列车---时速1000km/h G---高速动车---时速500km/ ...
- bzoj 2969: 矩形粉刷 概率期望
题目: 为了庆祝新的一年到来,小M决定要粉刷一个大木板.大木板实际上是一个W*H的方阵.小M得到了一个神奇的工具,这个工具只需要指定方阵中两个格子,就可以把这两格子为对角的,平行于木板边界的一个子矩形 ...
- bzoj 3611: [Heoi2014]大工程 虚树
题目: 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通道需要的代价为树上 ...
- POJ1442:Black Box
浅谈堆:https://www.cnblogs.com/AKMer/p/10284629.html 题目传送门:http://poj.org/problem?id=1442 用对顶堆维护第\(k\)小 ...
- Python:Iterable和Iterator
转于:https://blog.csdn.net/whgqgq/article/details/63685066 博主:gongqi1992 iterable和iterator最基本的区别: iter ...
- 一:安装Scala
Scala是一种类似Java的纯面向对象的函数式编程语言,由于函数具有明确的确定输入对确定输出的关系,所以适合推理和计算,一切函数都可以看成一系列的计算组成,另外由于Scala函数是没有副作用和透明的 ...
- Mybatis下面的MapperScannerConfigurer 扫描器
Mybatis MapperScannerConfigurer 自动扫描 将Mapper接口生成代理注入到Spring Mybatis在与Spring集成的时候可以配置 Ma ...
- JSP介绍(4)--- JSP 过滤器
过滤器是可用于 Servlet 编程的 Java 类,可以实现以下目的: 在客户端的请求访问后端资源之前,拦截这些请求. 在服务器的响应发送回客户端之前,处理这些响应. 过滤器通过 Web 部署描述符 ...
- JVM类加载(2)—连接
2.连接 连接就是将已经加载到内存中的类的二进制数据合并到Java虚拟机的运行时环境中去,加载阶段尚未完成,连接阶段可能已经开始.连接阶段包含验证.准备.解析过程. 2.1.验证 验证.class文件 ...