昨天终于把欧拉定理的证明看明白了。。。于是兴冲冲地写了2道题,发现自己啥都不会qwq


题意:给定一个正整数L<=2E+9,求至少多少个8连在一起组成正整数是L的倍数。

这很有意思么。。。

首先,连续的8可表示为:8*(10^x-1)/9;

那么就是L|8*(10^x-1)/9 => 9*L|8*(10^x-1) ,求最小的x;

我们设d=gcd(L,8)

则9*L/d | 8/d*(10^x-1),因为此时9*L/d 和 8/d 互质,所以9*L/d | 10^x-1,所以 10^x ≡ 1 (mod 9*L/d);

然后要证明一个结论:a^x ≡ 1 (mod n)的最小正整数解x0能整除φ(n)

证明:

反证:设不能整除,则设φ(n)=q*x0+r;(1<=r<x0)

因为a^x0 ≡ 1 (mod n),所以a^(q*x0) ≡ 1(mod n)

又因为a^φ(n) ≡ 1 (mod n),所以a^r ≡ 1 (mod n)

因为r<x0,所以假设不成立;

证毕。

所以我们枚举每个φ(9*L/d) 的约数,用快速幂判断就好了。

#include<cstdio>
#include<iostream>
#include<algorithm>
#define ll long long
#define R register ll
using namespace std;
inline ll g() {
R ret=,fix=; register char ch; while(!isdigit(ch=getchar())) fix=ch=='-'?-:fix;
do ret=ret*+(ch^); while(isdigit(ch=getchar())); return ret*fix;
}
ll a[],n,ans;
inline ll gcd(ll a,ll b) {return b?gcd(b,a%b):a;}
inline ll phi(ll n) {
R m=n; for(R i=;i*i<=n;++i) if(n%i==) {
m=m/i*(i-);
while(n%i==) n/=i;
} if(n>) m=m/n*(n-); return m;
}
inline ll mul(ll a,ll b) {
a%=n,b%=n; R c=(long double)a*b/n;
R ans=a*b-c*n; if(ans<) ans+=n;
if(ans>=n) ans-=n; return ans;
}
inline ll qpow(ll a,ll p) { R ret=;
for(;p;p>>=,a=mul(a,a)) if(p&) ret=mul(ret,a); return ret;
}
signed main() { R t=;
while(n=g(),n!=) { //cout<<n<<endl;
n=*n/gcd(,n);
printf("Case %d: ",++t);
if(gcd(,n)==) {
R p=phi(n),cnt=; //cout<<"PHI: "<<p<<endl;
for(R i=;i*i<=p;++i) if(p%i==) {
a[++cnt]=i;
if(i*i!=p) a[++cnt]=p/i;
} sort(a+,a+cnt+); R i;
for(i=;i<=cnt;++i) if(qpow(,a[i])==) break;
printf("%lld\n",a[i]);
} else printf("0\n");
}
}

2019.05.11

POJ3696 The Luckiest Number 欧拉定理的更多相关文章

  1. POJ3696 The Luckiest number

    题意 Language:Default The Luckiest number Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 7 ...

  2. POJ3696:The Luckiest number(欧拉函数||求某数最小的满足题意的因子)

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  3. [POJ3696]The Luckiest number(数论)

    题目:http://poj.org/problem?id=3696 题意:给你一个数字L,你要求出一个数N,使得N是L的倍数,且N的每位数都必须是8,输出N的位数(如果不存在输出0) 分析: 首先我们 ...

  4. POJ_3696 The Luckiest number 【欧拉定理+同余式+对取模的理解】

    一.题目 Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his ...

  5. poj 3696 The Luckiest Number

    The Luckiest Number 题目大意:给你一个int范围内的正整数n,求这样的最小的x,使得:连续的x个8可以被n整除. 注释:如果无解输出0.poj多组数据,第i组数据前面加上Case ...

  6. poj_3696_The Luckiest number

    Chinese people think of '8' as the lucky digit. Bob also likes digit '8'. Moreover, Bob has his own ...

  7. HDU 2462 The Luckiest number

    The Luckiest number Time Limit: 1000ms Memory Limit: 32768KB This problem will be judged on HDU. Ori ...

  8. The Luckiest number(hdu2462)

    The Luckiest number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Othe ...

  9. 「POJ3696」The Luckiest number【数论,欧拉函数】

    # 题解 一道数论欧拉函数和欧拉定理的入门好题. 虽然我提交的时候POJ炸掉了,但是在hdu里面A掉了,应该是一样的吧. 首先我们需要求的这个数一定可以表示成\(\frac{(10^x-1)}{9}\ ...

随机推荐

  1. bzoj 3727: Final Zadanie 思维题

    题目: Description 吉丽YY了一道神题,题面是这样的: "一棵n个点的树,每条边长度为1,第i个结点居住着a[i]个人.假设在i结点举行会议,所有人都从原住址沿着最短路径来到i结 ...

  2. INT 21H 指令说明及使用方法

    很多初学汇编语言的同学可能会对INT 21H这条指令感到困惑,不知道是什么意思,下面就以一段简单的程序为大家讲解: 例如:需要键盘输入,并且回显. AH的值需要查表取得,表在下面 指令:      M ...

  3. BZOJ5281:[Usaco2018 Open]Talent Show

    我对二分的理解:https://www.cnblogs.com/AKMer/p/9737477.html 题目传送门:https://www.lydsy.com/JudgeOnline/problem ...

  4. 洛谷 P4546 & bzoj 5020 在美妙的数学王国中畅游 —— LCT+泰勒展开

    题目:https://www.luogu.org/problemnew/show/P4546 先写了个55分的部分分,直接用LCT维护即可,在洛谷上拿了60分: 注意各处 pushup,而且 spla ...

  5. 如何调整chm文字字体大小

    chm文档是使用用层叠样式表来控制字符大小的,通过IE的改变“文字大小”是没效果的,那我们是不是就没有办法改变它的大小了呢?显然不是的. 工具/原料   chm文件 方法/步骤     首先打开chm ...

  6. Python知识点:distutils常用子模块

    from distutils.core import setup, Extension, Commandfrom distutils.command.build import buildfrom di ...

  7. Java常见设计模式之责任链模式

    原文地址:  http://www.cnblogs.com/java-my-life/archive/2012/05/28/2516865.html 在阎宏博士的<JAVA与模式>一书中开 ...

  8. Java变量初始化的讲解

    首先需要说明的是Java中的变量分为两种:成员变量和局部变量 其中成员变量又可分为:实例变量(非静态变量)和类变量(静态变量) 局部变量(局部变量的作用时间很短,所以一般是存储在栈中的): 1.形参在 ...

  9. 字符编码ASCII、Unicode、GB

    计算机的存储都是二进制的,那么我们平时看到的各种字符都需要通过按照一定的格式转换成为二进制才能在被计算机识别与处理.这个过程便成为编码.常见的编码方式有ASCII.Unicode.GB2312等. 1 ...

  10. 在Oracle中设置主键自增

    转自:https://www.2cto.com/database/201705/636725.html 数据库设置主键自增">oracle数据库设置主键自增: --创建表 create ...