算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)
一、介绍
1.算法的时间和空间间复杂度

2.特点
Running time is insensitive to input. The process of finding the smallest item on one
pass through the array does not give much information about where the smallest item
might be on the next pass. This property can be disadvantageous in some situations.
For example, the person using the sort client might be surprised to realize that it takes
about as long to run selection sort for an array that is already in order or for an array
with all keys equal as it does for a randomly-ordered array! As we shall see, other algo-
rithms are better able to take advantage of initial order in the input.
Data movement is minimal. Each of the N exchanges changes the value of two array
entries, so selection sort uses N exchanges—the number of array accesses is a linear
function of the array size. None of the other sorting algorithms that we consider have
this property (most involve linearithmic or quadratic growth).
3.过程

二、代码
package algorithms.elementary21; /******************************************************************************
* Compilation: javac Selection.java
* Execution: java Selection < input.txt
* Dependencies: StdOut.java StdIn.java
* Data files: http://algs4.cs.princeton.edu/21sort/tiny.txt
* http://algs4.cs.princeton.edu/21sort/words3.txt
*
* Sorts a sequence of strings from standard input using selection sort.
*
* % more tiny.txt
* S O R T E X A M P L E
*
* % java Selection < tiny.txt
* A E E L M O P R S T X [ one string per line ]
*
* % more words3.txt
* bed bug dad yes zoo ... all bad yet
*
* % java Selection < words3.txt
* all bad bed bug dad ... yes yet zoo [ one string per line ]
*
******************************************************************************/ import java.util.Comparator; import algorithms.util.StdIn;
import algorithms.util.StdOut; /**
* The <tt>Selection</tt> class provides static methods for sorting an
* array using selection sort.
* <p>
* For additional documentation, see <a href="http://algs4.cs.princeton.edu/21elementary">Section 2.1</a> of
* <i>Algorithms, 4th Edition</i> by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class Selection { // This class should not be instantiated.
private Selection() { } /**
* Rearranges the array in ascending order, using the natural order.
* @param a the array to be sorted
*/
public static void sort(Comparable[] a) {
int N = a.length;
for (int i = 0; i < N; i++) {
int min = i;
for (int j = i+1; j < N; j++) {
if (less(a[j], a[min])) min = j;
}
exch(a, i, min);
assert isSorted(a, 0, i);
}
assert isSorted(a);
} /**
* Rearranges the array in ascending order, using a comparator.
* @param a the array
* @param c the comparator specifying the order
*/
public static void sort(Object[] a, Comparator c) {
int N = a.length;
for (int i = 0; i < N; i++) {
int min = i;
for (int j = i+1; j < N; j++) {
if (less(c, a[j], a[min])) min = j;
}
exch(a, i, min);
assert isSorted(a, c, 0, i);
}
assert isSorted(a, c);
} /***************************************************************************
* Helper sorting functions.
***************************************************************************/ // is v < w ?
private static boolean less(Comparable v, Comparable w) {
return v.compareTo(w) < 0;
} // is v < w ?
private static boolean less(Comparator c, Object v, Object w) {
return c.compare(v, w) < 0;
} // exchange a[i] and a[j]
private static void exch(Object[] a, int i, int j) {
Object swap = a[i];
a[i] = a[j];
a[j] = swap;
} /***************************************************************************
* Check if array is sorted - useful for debugging.
***************************************************************************/ // is the array a[] sorted?
private static boolean isSorted(Comparable[] a) {
return isSorted(a, 0, a.length - 1);
} // is the array sorted from a[lo] to a[hi]
private static boolean isSorted(Comparable[] a, int lo, int hi) {
for (int i = lo + 1; i <= hi; i++)
if (less(a[i], a[i-1])) return false;
return true;
} // is the array a[] sorted?
private static boolean isSorted(Object[] a, Comparator c) {
return isSorted(a, c, 0, a.length - 1);
} // is the array sorted from a[lo] to a[hi]
private static boolean isSorted(Object[] a, Comparator c, int lo, int hi) {
for (int i = lo + 1; i <= hi; i++)
if (less(c, a[i], a[i-1])) return false;
return true;
} // print array to standard output
private static void show(Comparable[] a) {
for (int i = 0; i < a.length; i++) {
StdOut.println(a[i]);
}
} /**
* Reads in a sequence of strings from standard input; selection sorts them;
* and prints them to standard output in ascending order.
*/
public static void main(String[] args) {
String[] a = StdIn.readAllStrings();
Selection.sort(a);
show(a);
}
}
算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-001选择排序法(Selection sort)的更多相关文章
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-007归并排序(自下而上)
一. 1. 2. 3. 二.代码 package algorithms.mergesort22; import algorithms.util.StdIn; import algorithms.uti ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-006归并排序(Mergesort)
一. 1.特点 (1)merge-sort : to sort an array, divide it into two halves, sort the two halves (recursivel ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-005插入排序的改进版
package algorithms.elementary21; import algorithms.util.StdIn; import algorithms.util.StdOut; /***** ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-004希尔排序法(Shell Sort)
一.介绍 1.希尔排序的思路:希尔排序是插入排序的改进.当输入的数据,顺序是很乱时,插入排序会产生大量的交换元素的操作,比如array[n]的最小的元素在最后,则要经过n-1次交换才能排到第一位,因为 ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-002插入排序法(Insertion sort)
一.介绍 1.时间和空间复杂度 运行过程 2.特点: (1)对于已排序或接近排好的数据,速度很快 (2)对于部分排好序的输入,速度快 二.代码 package algorithms.elementar ...
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-008排序算法的复杂度(比较次数的上下限)
一. 1. 2.
- 算法Sedgewick第四版-第1章基础-2.1Elementary Sortss-003比较算法及算法的可视化
一.介绍 1. 2. 二.代码 1. package algorithms.elementary21; /*********************************************** ...
- 算法Sedgewick第四版-第1章基础-001递归
一. 方法可以调用自己(如果你对递归概念感到奇怪,请完成练习 1.1.16 到练习 1.1.22).例如,下面给出了 BinarySearch 的 rank() 方法的另一种实现.我们会经常使用递归, ...
- 算法Sedgewick第四版-第1章基础-1.3Bags, Queues, and Stacks-001可变在小的
1. package algorithms.stacks13; /******************************************************************* ...
随机推荐
- Spring mvc服务端消息推送(SSE技术)
SSE技术是基于单工通信模式,只是单纯的客户端向服务端发送请求,服务端不会主动发送给客户端.服务端采取的策略是抓住这个请求不放,等数据更新的时候才返回给客户端,当客户端接收到消息后,再向服务端发送请求 ...
- poj-1426-Find The Multiple(打表水过)
思路: 2的最近可以整除的数是10 所以,很关键的一点,只要是偶数,例如: 6:2*3,可以拆分为能够被2整除和能够被3整除的乘积,所以,10*111=1110 144:72*2,8*9*2,2*2* ...
- hdoj-3342-Legal or Not(拓扑排序)
题目链接 /* Name:hdoj-3342-Legal or Not Copyright: Author: Date: 2018/4/11 15:59:18 Description: 判断是否存在环 ...
- C++中预定义的宏
以下信息摘自与标准C++的文档中. 如果把这些宏加在程序的日志中,它将为开发人员进行问题分析提供了很好的帮助. standard c++ 1998版The following macro names ...
- HihoCoder1078线段树的区间修改(线段树+lazy)
每个测试点(输入文件)有且仅有一组测试数据. 每组测试数据的第1行为一个整数N,意义如前文所述. 每组测试数据的第2行为N个整数,分别描述每种商品的重量,其中第i个整数表示标号为i的商品的重量Pi. ...
- LeetCode 336. Palindrome Pairs
原题链接在这里:https://leetcode.com/problems/palindrome-pairs/ 题目: Given a list of unique words, find all p ...
- js 科学计数转数字或字符串
- bzoj 1997 [Hnoi2010]Planar——2-SAT+平面图的一个定理
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1997 平面图的一个定理:若边数大于(3*点数-6),则该图不是平面图. 然后就可以2-SAT ...
- JavaScript实现继承的几种重要范式
一 原型链 1. 代码示例 function SuperType() { this.superProperty = true; } SuperType.prototype.getSuperValue ...
- electron 安装失败解决办法
1.安装node https://nodejs.org/en/download/2.安装镜像工具npm install -g cnpm --registry=https://registry.npm. ...