题意:题目中定义了一种运算,把数字x变成数字x的二进制位数。问小于n的恰好k次运算可以变成1的数的个数(题目中的n是二进制数,n最大到2^1000)

思路:容易发现,无论多么大的数,只要进行了一次运算,一定会变成1000以内的数,所以我们可以预处理1000以内的数经过多少次运算到1。之后,我们可以枚举1000以内的数字,枚举有哪些数字是经过k - 1次运算到1(假设此时数字是i),那么小于n的位数为i的数字都是答案。怎么统计答案呢?我们用试填法。我们dfs中传入3个参数:deep(当前搜索到第几位), flag(判断后面的位可不可以随便填),remain(还剩多少位没有填)。我们判断第deep位可以填什么。如果n的第deep位是1,那么填1填0都可以,分别搜索。如果第deep位是0,那么只能填0。

代码:

#include <bits/stdc++.h>
#define LL long long
using namespace std;
const LL mod = 1000000007;
const int maxn = 1010;
LL C[maxn][maxn];
LL num[maxn];
LL f[maxn][maxn];//i位,需要j步到1的
char s[maxn];
LL ans;
int n;
void dfs(int deep, bool flag, int remain) {
if(n < remain) return;
if(remain == 0) {
ans = (ans + 1) % mod;
return;
}
if(deep < 1) return;
if(flag == 0) {
ans = (ans + C[deep][remain]) % mod;
return;
}
if(s[deep] == '1') {
dfs(deep - 1, 0, remain);
dfs(deep - 1, flag, remain - 1);
} else {
dfs(deep - 1, flag, remain);
}
}
int main() {
int m;
scanf("%s",s + 1);
scanf("%d", &m);
n = strlen(s + 1);
if(m == 0) {
printf("1\n");
return 0;
} else if(m == 1) {
printf("%d\n", n - 1);
return 0;
}
for (int i = 0; i <= n; i++) C[i][0] = 1;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= i; j++) {
C[i][j] = (C[i - 1][j] + C[i - 1][j - 1]) % mod;
}
reverse(s + 1, s + 1 + n);
for (int i = 2; i <= 1000; i++) {
int cnt = 0;
for (int j = i; j; j >>= 1) {
cnt += (j & 1);
}
num[i] = num[cnt] + 1;
if(num[i] + 1 == m)
dfs(n, 1, i);
}
printf("%lld\n", ans);
}

  

Codeforces 914C Travelling Salesman and Special Numbers (数位DP)的更多相关文章

  1. Codeforces 914 C. Travelling Salesman and Special Numbers (数位DP)

    题目链接:Travelling Salesman and Special Numbers 题意: 给出一个二进制数n,每次操作可以将这个数变为其二进制数位上所有1的和(3->2 ; 7-> ...

  2. Codeforces 914C Travelling Salesman and Special Numbers:数位dp

    题目链接:http://codeforces.com/problemset/problem/914/C 题意: 对数字x进行一次操作,可以将数字x变为x在二进制下1的个数. 显然,一个正整数在进行了若 ...

  3. Codeforces 374 C. Travelling Salesman and Special Numbers (dfs、记忆化搜索)

    题目链接:Travelling Salesman and Special Numbers 题意: 给了一个n×m的图,图里面有'N','I','M','A'四种字符.问图中能构成NIMA这种序列最大个 ...

  4. Travelling Salesman and Special Numbers CodeForces - 914C (数位dp)

    大意: 对于一个数$x$, 每次操作可将$x$变为$x$二进制中1的个数 定义经过k次操作变为1的数为好数, 求$[1,n]$中有多少个好数 注意到n二进制位最大1000位, 经过一次操作后一定变为1 ...

  5. Codeforces 914 C Travelling Salesman and Special Numbers

    Discription The Travelling Salesman spends a lot of time travelling so he tends to get bored. To pas ...

  6. 【Codecraft-18 and Codeforces Round #458 (Div. 1 + Div. 2, combined) C】 Travelling Salesman and Special Numbers

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 会发现. 进行一次操作过后. 得到的数字肯定是<=1000的 然后1000以下可以暴力做的. 则我们枚举第1步后得到的数字x是 ...

  7. Codeforces Beta Round #51 D. Beautiful numbers 数位dp

    D. Beautiful numbers Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/55/p ...

  8. 2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP)

    2018 ACM 国际大学生程序设计竞赛上海大都会赛重现赛 J Beautiful Numbers (数位DP) 链接:https://ac.nowcoder.com/acm/contest/163/ ...

  9. codeforces 55D - Beautiful numbers(数位DP+离散化)

    D. Beautiful numbers time limit per test 4 seconds memory limit per test 256 megabytes input standar ...

随机推荐

  1. C#中的线程(一)入门

    C#中的线程(一)入门   Keywords:C# 线程Source:http://www.albahari.com/threading/Author: Joe AlbahariTranslator: ...

  2. 二维码的扫描和生成--第三方开源--ZXing

    ZXing的二维码功能的提取lib下载地址:https://github.com/xuyisheng/ZXingLib 1.扫描二维码: 我们扫描就是要用到这个CaptureActivity类,直接把 ...

  3. 17 python 内置函数

    内置函数:Python的内部自带的函数 作用域相关: 基于字典的形式获取局部变量和全局变量 globals()——获取全局变量的ha1 locals()——获取执行本方法所在命名空间内的局部变量的字典 ...

  4. 幸运数字(数位dp)

    个人心得:数位dp处理起来是真的麻烦,本来动态规划就够头疼的了,菜的一批. 来看这个题目吧,题目在下面. 把题目变成可以求得就是求前n个数中1-n*9的情况的总和,所以用dp[i][j],表示前i个数 ...

  5. Yii 查询 搜索

    一.视图 <div class="form-horizontal"> <?php $form = $this->beginWidget('CActiveFo ...

  6. Real-Time Rendering (2) - 变换和矩阵(Transforms and Matrics)

    http://blog.csdn.net/silangquan/article/details/9970673 提要 在图形的计算中,比如旋转.缩放.平移.投影等操作,矩阵都扮演着极其重要的角色,它是 ...

  7. WebSphere & Log4j

    IBM的东西,真是太麻烦了,一个日志都给你替换掉,太霸道了,Google了下,居然是个普遍想象,不过也有相关的解决方 案,基本好像都是在 WAS5,WAS6.1上的,我没环境,不过我这边的WAS7 没 ...

  8. 将非Maven管理的jar打包到Maven本地资源库

    这里有2个案例,需要手动发出Maven命令包括一个 jar 到 Maven 的本地资源库. 要使用的 jar 不存在于 Maven 的中心储存库中. 您创建了一个自定义的 jar ,而另一个 Mave ...

  9. UFLDL新版教程

    http://ufldl.stanford.edu/tutorial/ 还带编程作业.

  10. vlan之间Hybrid端口配置

    要求:1.PC1和PC2不能互相访问,但是都能访问PC3 SW1配置:vlan batch 10 20 100 interface Ethernet0/0/1                     ...