牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)
链接:E.简单数据结构1
题意:


对一个数p取log(p)次的欧拉函数等于1,故可将操作2的复杂度降到log(p),可以直接求解。用树状数组的小技巧,可以在log的时间直接求出当前的a[i]。具体见代码。
#include <bits/stdc++.h>
using namespace std; const double EPS = 1e-;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
const int maxn = 5e5 + ;
const int maxm = 2e7 + ;
int n, m;
long long a[maxn], bit[maxn];
int phi[maxm]; void Eul_list(int n) //欧拉函数_list
{
memset(phi, , sizeof(phi));
phi[] = ; for(int i = ; i < n; i++){
if(!phi[i]){
for(int j = i; j < n; j += i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
}
} void add(int i, long long d)
{
while(i < maxn){
bit[i] += d;
i += -i & i;
}
} long long sum(int i)
{
long long ans = ;
while(i){
ans += bit[i];
i -= -i & i;
}
return ans;
} long long Mod(long long x, long long y) //欧拉定理的条件
{
return x < y ? x : x % y + y;
} long long pow_mod(long long x, long long n, long long mod)
{
long long ans = ;
x = Mod(x, mod);
while(n){
if(n & ) ans = Mod(ans * x, mod);
x = Mod(x * x, mod);
n >>= ;
}
return ans;
} long long dfs(int l, int r, int p)
{
long long val = sum(l);
if(l == r || p == ) return Mod(val, p); //降幂加速
return pow_mod(val, dfs(l + , r, phi[p]), p);
} int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++){
scanf("%lld", &a[i]);
add(i, a[i] - a[i-]); //对i求前缀和及为a[i]
} Eul_list(maxm); int op, l, r, x;
while(m--){
scanf("%d%d%d%d", &op, &l, &r, &x);
if(op == ){
//只需要当前数时的更新技巧
add(l, x);
add(r + , -x);
}
else printf("%lld\n", dfs(l, r, x) % x);
} return ;
}
牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)的更多相关文章
- 牛客练习赛7 E 珂朵莉的数列(树状数组+爆long long解决方法)
https://www.nowcoder.com/acm/contest/38/E 题意: 思路: 树状数组维护.从大佬那里学习了如何处理爆long long的方法. #include<iost ...
- 牛客网多校第5场 H subseq 【树状数组+离散化】
题目:戳这里 学习博客:戳这里 题意:给n个数为a1~an,找到字典序第k小的序列,输出该序列所有数所在位置. 解题思路:先把所有序列预处理出来,方法是设一个数组为dp,dp[i]表示以i为开头的序列 ...
- 牛客网多校第5场 I vcd 【树状数组+离散化处理】【非原创】
题目:戳这里 学习博客:戳这里 作者:阿狸是狐狸啦 n个点,一个点集S是好的,当且仅当对于他的每个子集T,存在一个右边无限延长的矩形,使的这个矩形包含了T,但是和S-T没有交集. 求有多少个这种集合. ...
- 牛客练习赛22 C 简单瞎搞题
//位运算 // & 都是1 才是 1 // | 都是0 才是0 // ^ 不一样才是1 #include <iostream> #include <cstdio> # ...
- BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组
BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...
- 牛客练习赛53 E-老瞎眼pk小鲜肉(思维+线段树+离线)
前言 听说是线段树离线查询?? 做题做着做着慢慢对离线操作有点感觉了,不过也还没参透,等再做些题目再来讨论离线.在线操作. 这题赛后看代码发现有人用的树状数组,$tql$.当然能用树状数组写的线段树也 ...
- 牛客练习赛22 简单瞎搞题(bitset优化dp)
一共有 n个数,第 i 个数是 xi xi 可以取 [li , ri] 中任意的一个值. 设 ,求 S 种类数. 输入描述: 第一行一个数 n. 然后 n 行,每行两个数表示 li,ri. 输出 ...
- 牛客练习赛43-F(简单容斥)
题目链接:https://ac.nowcoder.com/acm/contest/548/F 题意:简化题意之后就是求[1,n]中不能被[2,m]中的数整除的数的个数. 思路:简单容斥题,求[1,n] ...
- 【牛客练习赛22 C】
https://www.nowcoder.com/acm/contest/132/C 题目大意:在n个区间中取出n个数,相加的和一共会出现多少种结果. 题目分析:对于这种挑选数字相加,由于每一步不同的 ...
随机推荐
- NYOJ(680),摘枇杷,(暴力,或者二分搜索)
题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=680 很巧妙的一个题目,就是看你的逆向思维,result 一定是max(a[i])~sum ...
- an exception occurred while initializing the database.
对于手动删除本地的LocalDB数据库之后出现标题所示异常的,推荐下面的命令: sqllocaldb.exe stop v11.0 sqllocaldb.exe delete v11.0 在程序包管理 ...
- 九九乘法表(Python实现)
a = 1 #while实现 while a: b = 1 while b: print(str(b)+'*'+str(a),end='=') print(a*b,end=' ') if b == a ...
- Rxjava+retrofit+mvp整合
转载请标明出处: http://blog.csdn.net/forezp/article/details/52621898 本文出自方志朋的博客 最近在看Rxjava,写了一个简单的 demo整合了R ...
- java基础1.5版后新特性 自动装箱拆箱 Date SimpleDateFormat Calendar.getInstance()获得一个日历对象 抽象不要生成对象 get set add System.arrayCopy()用于集合等的扩容
8种基本数据类型的8种包装类 byte Byte short Short int Integer long Long float Float double Double char Character ...
- MySQL5.6基于GTID的主从复制配置
全局事务标示符(Global Transactions Identifier)是MySQL 5.6复制的一个新特性. GTID实际上是由UUID+TID组成的.其中UUID是一个MySQL实例的唯一标 ...
- mysql的jdbc.url携带allowMultiQueries=true参数的作用及其原理
如下配置 jdbc.url=jdbc:mysql://127.0.0.1:3306/chubb_2?autoReconnect=true&useUnicode=true&charact ...
- php结合redis实现高并发下的抢购、秒杀功能【转】
抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存 ...
- 用Go实现RabbitMQ消息收发
// amqp.Dial accepts a string in the AMQP URI format and returns a new Connection over TCP using Pla ...
- 通过IIS共享文件夹来实现静态资源"本地分布式"部署
以下以文件型数据库(如sqlite)为例 楼主话:以下内容,若有不专业处,大胆喷,虚心求教. 起因:要进行一个项目的分布式部署,而这个项目所涉及的其中一个数据库为sqlite(经测试,同为文件型数据库 ...