链接:E.简单数据结构1

题意:

给一个长为n的序列,m次操作,每次操作:
1.区间
2.对于区间,查询 ,一直到-
请注意每次的模数不同。
 
题解:扩展欧拉定理降幂

对一个数p取log(p)次的欧拉函数等于1,故可将操作2的复杂度降到log(p),可以直接求解。用树状数组的小技巧,可以在log的时间直接求出当前的a[i]。具体见代码。

#include <bits/stdc++.h>
using namespace std; const double EPS = 1e-;
const int INF = 0x3f3f3f3f;
const int mod = 1e9 + ;
const int maxn = 5e5 + ;
const int maxm = 2e7 + ;
int n, m;
long long a[maxn], bit[maxn];
int phi[maxm]; void Eul_list(int n) //欧拉函数_list
{
memset(phi, , sizeof(phi));
phi[] = ; for(int i = ; i < n; i++){
if(!phi[i]){
for(int j = i; j < n; j += i){
if(!phi[j]) phi[j] = j;
phi[j] = phi[j] / i * (i - );
}
}
}
} void add(int i, long long d)
{
while(i < maxn){
bit[i] += d;
i += -i & i;
}
} long long sum(int i)
{
long long ans = ;
while(i){
ans += bit[i];
i -= -i & i;
}
return ans;
} long long Mod(long long x, long long y) //欧拉定理的条件
{
return x < y ? x : x % y + y;
} long long pow_mod(long long x, long long n, long long mod)
{
long long ans = ;
x = Mod(x, mod);
while(n){
if(n & ) ans = Mod(ans * x, mod);
x = Mod(x * x, mod);
n >>= ;
}
return ans;
} long long dfs(int l, int r, int p)
{
long long val = sum(l);
if(l == r || p == ) return Mod(val, p); //降幂加速
return pow_mod(val, dfs(l + , r, phi[p]), p);
} int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++){
scanf("%lld", &a[i]);
add(i, a[i] - a[i-]); //对i求前缀和及为a[i]
} Eul_list(maxm); int op, l, r, x;
while(m--){
scanf("%d%d%d%d", &op, &l, &r, &x);
if(op == ){
//只需要当前数时的更新技巧
add(l, x);
add(r + , -x);
}
else printf("%lld\n", dfs(l, r, x) % x);
} return ;
}

牛客练习赛22-E.简单数据结构1(扩展欧拉定理降幂 +树状数组)的更多相关文章

  1. 牛客练习赛7 E 珂朵莉的数列(树状数组+爆long long解决方法)

    https://www.nowcoder.com/acm/contest/38/E 题意: 思路: 树状数组维护.从大佬那里学习了如何处理爆long long的方法. #include<iost ...

  2. 牛客网多校第5场 H subseq 【树状数组+离散化】

    题目:戳这里 学习博客:戳这里 题意:给n个数为a1~an,找到字典序第k小的序列,输出该序列所有数所在位置. 解题思路:先把所有序列预处理出来,方法是设一个数组为dp,dp[i]表示以i为开头的序列 ...

  3. 牛客网多校第5场 I vcd 【树状数组+离散化处理】【非原创】

    题目:戳这里 学习博客:戳这里 作者:阿狸是狐狸啦 n个点,一个点集S是好的,当且仅当对于他的每个子集T,存在一个右边无限延长的矩形,使的这个矩形包含了T,但是和S-T没有交集. 求有多少个这种集合. ...

  4. 牛客练习赛22 C 简单瞎搞题

    //位运算 // & 都是1 才是 1 // | 都是0 才是0 // ^ 不一样才是1 #include <iostream> #include <cstdio> # ...

  5. BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组

    BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...

  6. 牛客练习赛53 E-老瞎眼pk小鲜肉(思维+线段树+离线)

    前言 听说是线段树离线查询?? 做题做着做着慢慢对离线操作有点感觉了,不过也还没参透,等再做些题目再来讨论离线.在线操作. 这题赛后看代码发现有人用的树状数组,$tql$.当然能用树状数组写的线段树也 ...

  7. 牛客练习赛22 简单瞎搞题(bitset优化dp)

    一共有 n个数,第 i 个数是 xi  xi 可以取 [li , ri] 中任意的一个值. 设 ,求 S 种类数. 输入描述: 第一行一个数 n. 然后 n 行,每行两个数表示 li,ri.   输出 ...

  8. 牛客练习赛43-F(简单容斥)

    题目链接:https://ac.nowcoder.com/acm/contest/548/F 题意:简化题意之后就是求[1,n]中不能被[2,m]中的数整除的数的个数. 思路:简单容斥题,求[1,n] ...

  9. 【牛客练习赛22 C】

    https://www.nowcoder.com/acm/contest/132/C 题目大意:在n个区间中取出n个数,相加的和一共会出现多少种结果. 题目分析:对于这种挑选数字相加,由于每一步不同的 ...

随机推荐

  1. NYOJ(680),摘枇杷,(暴力,或者二分搜索)

    题目链接:http://acm.nyist.net/JudgeOnline/problem.php?pid=680 很巧妙的一个题目,就是看你的逆向思维,result 一定是max(a[i])~sum ...

  2. an exception occurred while initializing the database.

    对于手动删除本地的LocalDB数据库之后出现标题所示异常的,推荐下面的命令: sqllocaldb.exe stop v11.0 sqllocaldb.exe delete v11.0 在程序包管理 ...

  3. 九九乘法表(Python实现)

    a = 1 #while实现 while a: b = 1 while b: print(str(b)+'*'+str(a),end='=') print(a*b,end=' ') if b == a ...

  4. Rxjava+retrofit+mvp整合

    转载请标明出处: http://blog.csdn.net/forezp/article/details/52621898 本文出自方志朋的博客 最近在看Rxjava,写了一个简单的 demo整合了R ...

  5. java基础1.5版后新特性 自动装箱拆箱 Date SimpleDateFormat Calendar.getInstance()获得一个日历对象 抽象不要生成对象 get set add System.arrayCopy()用于集合等的扩容

    8种基本数据类型的8种包装类 byte Byte short Short int Integer long Long float Float double Double char Character ...

  6. MySQL5.6基于GTID的主从复制配置

    全局事务标示符(Global Transactions Identifier)是MySQL 5.6复制的一个新特性. GTID实际上是由UUID+TID组成的.其中UUID是一个MySQL实例的唯一标 ...

  7. mysql的jdbc.url携带allowMultiQueries=true参数的作用及其原理

    如下配置 jdbc.url=jdbc:mysql://127.0.0.1:3306/chubb_2?autoReconnect=true&useUnicode=true&charact ...

  8. php结合redis实现高并发下的抢购、秒杀功能【转】

    抢购.秒杀是如今很常见的一个应用场景,主要需要解决的问题有两个:1 高并发对数据库产生的压力2 竞争状态下如何解决库存的正确减少("超卖"问题)对于第一个问题,已经很容易想到用缓存 ...

  9. 用Go实现RabbitMQ消息收发

    // amqp.Dial accepts a string in the AMQP URI format and returns a new Connection over TCP using Pla ...

  10. 通过IIS共享文件夹来实现静态资源"本地分布式"部署

    以下以文件型数据库(如sqlite)为例 楼主话:以下内容,若有不专业处,大胆喷,虚心求教. 起因:要进行一个项目的分布式部署,而这个项目所涉及的其中一个数据库为sqlite(经测试,同为文件型数据库 ...