【洛谷P2515】[HAOI2010]软件安装

题目描述

现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi。我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大)。

但是现在有个问题:软件之间存在依赖关系,即软件i只有在安装了软件j(包括软件j的直接或间接依赖)的情况下才能正确工作(软件i依赖软件j)。幸运的是,一个软件最多依赖另外一个软件。如果一个软件不能正常工作,那么它能够发挥的作用为0。

我们现在知道了软件之间的依赖关系:软件i依赖软件Di。现在请你设计出一种方案,安装价值尽量大的软件。一个软件只能被安装一次,如果一个软件没有依赖则Di=0,这时只要这个软件安装了,它就能正常工作。

Tarjan+树形背包。

Tarjan就是为了恶心人的,注意建边。

模了第一篇题解大佬的奇淫技巧,对于fa是0的点,可以不去管它,等到缩完点重新建边之后,我们统计每个点的入度,如果该点入度为零,那么说明这个点是森林中一棵树的树根,那么这个时候我们再建立超级源点就可以了。

不然的话再所点之前建立超级源点真的恶心,深受其害。。。

至于树形DP,这道题和选课基本上一样,不过我发现了一种更好的有依赖的树形DP的写法,也算是现在才真正学会。

模板:

code:

void dfs(int u){
for(int i=w[u];i<=n;i++)f[u][i]=v[u];
for(int i=head[i];i;i=edge[i].nxt){
int v=edge[i].to;
dfs(v);
for(int j=m;j>=w[u];j--){
for(int k=0;k<=j-w[u];k++){
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]);
}
}
}
}

code:

#include <iostream>
#include <cstdio> using namespace std; const int wx=1017; inline int read(){
int sum=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){sum=(sum<<1)+(sum<<3)+ch-'0';ch=getchar();}
return sum*f;
} int num1,num2,n,m,top,tot,col;
int head1[wx],head2[wx],dfn[wx],low[wx],st[wx];
int belong[wx],f[wx][wx],tmp[wx];
int w[wx],v[wx],W[wx],V[wx],fa[wx]; struct node{
int nxt,to;
}edge1[wx*2]; struct e{
int nxt,to;
}edge2[wx*2]; void add1(int from,int to){
edge1[++num1].nxt=head1[from];
edge1[num1].to=to;
head1[from]=num1;
} void add2(int from,int to){
edge2[++num2].nxt=head2[from];
edge2[num2].to=to;
head2[from]=num2;
} void Tarjan(int u){
dfn[u]=low[u]=++tot;
st[++top]=u;
for(int i=head1[u];i;i=edge1[i].nxt){
int v=edge1[i].to;
if(!dfn[v]){
Tarjan(v);
low[u]=min(low[u],low[v]);
}
else if(!belong[v]){
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u]){
belong[u]=++col;
while(st[top]!=u){
belong[st[top]]=col;
top--;
}
top--;
}
} void CQ(){
for(int i=1;i<=n;i++){
if(belong[i]!=belong[fa[i]]&&fa[i]){
add2(belong[fa[i]],belong[i]);
tmp[belong[i]]++;
}
}
for(int i=1;i<=n;i++){
W[belong[i]]+=w[i];
V[belong[i]]+=v[i];
}
for(int i=1;i<=col;i++){
if(!tmp[i])add2(col+1,i);
}
} void dfs(int u){
for(int i=W[u];i<=m;i++)f[u][i]=V[u];
for(int i=head2[u];i;i=edge2[i].nxt){
int v=edge2[i].to;
dfs(v);
for(int j=m;j>=W[u];j--){
for(int k=0;k<=j-W[u];k++){
f[u][j]=max(f[u][j],f[u][j-k]+f[v][k]);
}
}
}
} int main(){
n=read();m=read();
for(int i=1;i<=n;i++)w[i]=read();
for(int i=1;i<=n;i++)v[i]=read();
for(int i=1;i<=n;i++){
fa[i]=read();
if(!fa[i])continue;
add1(fa[i],i);
}
for(int i=1;i<=n;i++)if(!dfn[i])Tarjan(i);
CQ();
dfs(col+1);
printf("%d\n",f[col+1][m]);
return 0;
}

Tarjan+树形DP【洛谷P2515】[HAOI2010]软件安装的更多相关文章

  1. 洛谷 P2515 [HAOI2010]软件安装 解题报告

    P2515 [HAOI2010]软件安装 题目描述 现在我们的手头有\(N\)个软件,对于一个软件\(i\),它要占用\(W_i\)的磁盘空间,它的价值为\(V_i\).我们希望从中选择一些软件安装到 ...

  2. 洛谷P2515 [HAOI2010]软件安装(tarjan缩点+树形dp)

    传送门 我们可以把每一个$d$看做它的父亲,这样这个东西就构成了一个树形结构 问题是他有可能形成环,所以我们还需要一遍tarjan缩点 缩完点后从0向所有入度为零的点连边 然后再跑一下树形dp就行了 ...

  3. 洛谷 P2515 [HAOI2010]软件安装(缩点+树形dp)

    题面 luogu 题解 缩点+树形dp 依赖关系可以看作有向边 因为有环,先缩点 缩点后,有可能图不联通. 我们可以新建一个结点连接每个联通块. 然后就是树形dp了 Code #include< ...

  4. 洛谷—— P2515 [HAOI2010]软件安装

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  5. 洛谷 P2515 [HAOI2010]软件安装

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...

  6. 洛谷——P2515 [HAOI2010]软件安装

    https://www.luogu.org/problem/show?pid=2515#sub 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中 ...

  7. 树形DP 洛谷P2014 选课

    洛谷P2014 选课 题目描述 在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门 ...

  8. luogu P2515 [HAOI2010]软件安装 |Tarjan+树上背包

    题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为MM计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但 ...

  9. [bzoj2427]P2515 [HAOI2010]软件安装(树上背包)

    tarjan+树上背包 题目描述 现在我们的手头有 \(N\) 个软件,对于一个软件 \(i\),它要占用 \(W_i\) 的磁盘空间,它的价值为 \(V_i\).我们希望从中选择一些软件安装到一台磁 ...

  10. P2515 [HAOI2010]软件安装

    树形背包 #include<cstdio> #include<cstdlib> #include<algorithm> #include<cstring> ...

随机推荐

  1. Xcode的Refactor使用

    最近在看<重构>的书,想到Xcode有一个Refactor的功能,不知道您用的多不多,用这个功能在我们开发过程中,可以提高开发效率. Refactor 右键显示 Refactor 一.Re ...

  2. C#字符串全排序

    排列:从n个元素中任取m个元素,并按照一定的顺序进行排列,称为排列: 全排列:当n==m时,称为全排列: 比如:集合{ 1,2,3}的全排列为: { 1 2 3} { 1 3 2 } { 2 1 3 ...

  3. List转Datable(需区分对象充当List成员和数组充当List成员两种情况)

    对象充当List成员时: /// <summary> /// 将泛类型集合List类转换成DataTable /// </summary> /// <param name ...

  4. 2015.1.8 Left join 左连接

    格式 select f1.a, f2.b form f1 left jion f2 on .... 注意:左边的查询部分只能有select和from,不能出现where order by等.若有必须在 ...

  5. list()的相关问题

    由php手册中可以看到对list的定义: list — 把数组中的值赋给一些变量,像 array() 一样,这不是真正的函数,而是语言结构.list() 用一步操作给一组变量进行赋值. array l ...

  6. js在浏览器下的区别小结(部分)

    1.初始化数组: document.write([1,2,3,].length); IE:4//把数组中最后一个逗号后面的当做了undefined元素 FF.Opera.Safari:3 2.join ...

  7. java定时器控制时间打印

    public class test2 { public static void main(String []args){ Timer timer=new Timer(); timer.schedule ...

  8. spring整合web项目演示

  9. 关于handler和异步任务

    handler使用流程概要 首先在主线程新建一个handler实例,重写onhandlemessage(Message msg) 方法,对传过来的message进行处理 然后在子线程中完成操作,操作完 ...

  10. SQL查询语句 [1]

    一.使用字符串作为条件查询 在 Home/controller/UserController.class.php 下插入 <?php namespace Home\Controller; use ...