转自http://www.cnblogs.com/justany/archive/2012/11/23/2782660.html

OpenCV 2.4+ C++ 边缘梯度计算

2012-11-23 09:11 by Justany_WhiteSnow, 16594 阅读, 6 评论, 收藏编辑

图像的边缘

图像的边缘从数学上是如何表示的呢?

图像的边缘上,邻近的像素值应当显著地改变了。而在数学上,导数是表示改变快慢的一种方法。梯度值的大变预示着图像中内容的显著变化了。

用更加形象的图像来解释,假设我们有一张一维图形。下图中灰度值的“跃升”表示边缘的存在:

    

使用一阶微分求导我们可以更加清晰的看到边缘“跃升”的存在(这里显示为高峰值):

    

由此我们可以得出:边缘可以通过定位梯度值大于邻域的相素的方法找到。

卷积

卷积可以近似地表示求导运算。

那么卷积是什么呢?

卷积是在每一个图像块与某个算子(核)之间进行的运算。

核?!

核就是一个固定大小的数值数组。该数组带有一个锚点 ,一般位于数组中央。

可是这怎么运算啊?

假如你想得到图像的某个特定位置的卷积值,可用下列方法计算:

  1. 将核的锚点放在该特定位置的像素上,同时,核内的其他值与该像素邻域的各像素重合;
  2. 将核内各值与相应像素值相乘,并将乘积相加;
  3. 将所得结果放到与锚点对应的像素上;
  4. 对图像所有像素重复上述过程。

用公式表示上述过程如下:

    

在图像边缘的卷积怎么办呢?

计算卷积前,OpenCV通过复制源图像的边界创建虚拟像素,这样边缘的地方也有足够像素计算卷积了。

近似梯度

比如内核为3时。

首先对x方向计算近似导数:

然后对y方向计算近似导数:

然后计算梯度:

当然你也可以写成:

开始求梯度

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h> using namespace cv; int main( int argc, char** argv ){ Mat src, src_gray;
Mat grad;
char* window_name = "求解梯度";
int scale = 1;
int delta = 0;
int ddepth = CV_16S; int c; src = imread( argv[1] ); if( !src.data ){
return -1;
} //高斯模糊
GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT ); //转成灰度图
cvtColor( src, src_gray, CV_RGB2GRAY ); namedWindow( window_name, CV_WINDOW_AUTOSIZE ); Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y; Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT );
convertScaleAbs( grad_x, abs_grad_x ); Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );
convertScaleAbs( grad_y, abs_grad_y ); addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad ); imshow( window_name, grad ); waitKey(0); return 0;
}

Sobel函数

索贝尔算子(Sobel operator)计算。

C++: void Sobel(InputArray src, OutputArray dst, int ddepth, int dx, int dy, int ksize=3, double scale=1, double delta=0, intborderType=BORDER_DEFAULT )
参数
  • src – 输入图像。
  • dst – 输出图像,与输入图像同样大小,拥有同样个数的通道。
  • ddepth –
    输出图片深度;下面是输入图像支持深度和输出图像支持深度的关系:
    • src.depth() = CV_8Uddepth = -1/CV_16S/CV_32F/CV_64F
    • src.depth() = CV_16U/CV_16Sddepth = -1/CV_32F/CV_64F
    • src.depth() = CV_32Fddepth = -1/CV_32F/CV_64F
    • src.depth() = CV_64Fddepth = -1/CV_64F

    当 ddepth为-1时, 输出图像将和输入图像有相同的深度。输入8位图像则会截取顶端的导数。

  • xorder – x方向导数运算参数。
  • yorder – y方向导数运算参数。
  • ksize – Sobel内核的大小,可以是:1,3,5,7。
  • scale – 可选的缩放导数的比例常数。
  • delta – 可选的增量常数被叠加到导数中。
  • borderType – 用于判断图像边界的模式。

代码注释:

//在x方向求图像近似导数
Sobel( src_gray, grad_x, ddepth, 1, 0, 3, scale, delta, BORDER_DEFAULT ); //在y方向求图像近似导数
Sobel( src_gray, grad_y, ddepth, 0, 1, 3, scale, delta, BORDER_DEFAULT );

如果我们打印上面两个输出矩阵,可以看到grad_x和grad_y中的元素有正有负。

当然,正方向递增就是正的,正方向递减则是负值。

这很重要,我们可以用来判断梯度方向。

convertScaleAbs函数

线性变换转换输入数组元素成8位无符号整型。

C++: void convertScaleAbs(InputArray src, OutputArray dst, double alpha=1, double beta=0)
参数
  • src – 输入数组。
  • dst – 输出数组。
  • alpha – 可选缩放比例常数。
  • beta – 可选叠加到结果的常数。

对于每个输入数组的元素函数convertScaleAbs 进行三次操作依次是:缩放,得到一个绝对值,转换成无符号8位类型。

对于多通道矩阵,该函数对各通道独立处理。如果输出不是8位,将调用Mat::convertTo 方法并计算结果的绝对值,例如:

Mat_<float> A(30,30);
randu(A, Scalar(-100), Scalar(100));
Mat_<float> B = A*5 + 3;
B = abs(B);

为了能够用图像显示,提供一个直观的图形,我们利用该方法,将-256 — 255的导数值,转成0 — 255的无符号8位类型。

addWeighted函数

计算两个矩阵的加权和。

C++: void addWeighted(InputArray src1, double alpha, InputArray src2, double beta, double gamma, OutputArray dst, intdtype=-1)
参数
  • src1 – 第一个输入数组。
  • alpha – 第一个数组的加权系数。
  • src2 – 第二个输入数组,必须和第一个数组拥有相同的大小和通道。
  • beta – 第二个数组的加权系数。
  • dst – 输出数组,和第一个数组拥有相同的大小和通道。
  • gamma – 对所有和的叠加的常量。
  • dtype – 输出数组中的可选的深度,当两个数组具有相同的深度,此系数可设为-1,意义等同于选择与第一个数组相同的深度。

函数addWeighted 两个数组的加权和公式如下:

    

在多通道情况下,每个通道是独立处理的,该函数可以被替换成一个函数表达式:

    dst = src1*alpha + src2*beta + gamma;

利用convertScaleAbs和addWeighted,我们可以对梯度进行一个可以用图像显示的近似表达。

这样我们就可以得到下面的效果:

梯度方向

但有时候边界还不够,我们希望得到图片色块之间的关系,或者研究样本的梯度特征来对机器训练识别物体时候,我们还需要梯度的方向。

二维平面的梯度定义为:

    

这很好理解,其表明颜色增长的方向与x轴的夹角。

但Sobel算子对于沿x轴和y轴的排列表示的较好,但是对于其他角度表示却不够精确。这时候我们可以使用Scharr滤波器。

Scharr滤波器的内核为:

    

这样能提供更好的角度信息,现在我们修改原程序,改为使用Scharr滤波器进行计算:

#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h> using namespace cv; int main( int argc, char** argv ){ Mat src, src_gray;
Mat grad;
char* window_name = "梯度计算";
int scale = 1;
int delta = 0;
int ddepth = CV_16S; int c; src = imread( argv[1] ); if( !src.data ){
return -1;
} GaussianBlur( src, src, Size(3,3), 0, 0, BORDER_DEFAULT ); cvtColor( src, src_gray, CV_RGB2GRAY ); namedWindow( window_name, CV_WINDOW_AUTOSIZE ); Mat grad_x, grad_y;
Mat abs_grad_x, abs_grad_y; //改为Scharr滤波器计算x轴导数
Scharr( src_gray, grad_x, ddepth, 1, 0, scale, delta, BORDER_DEFAULT );
convertScaleAbs( grad_x, abs_grad_x ); //改为Scharr滤波器计算y轴导数
Scharr( src_gray, grad_y, ddepth, 0, 1, scale, delta, BORDER_DEFAULT );
convertScaleAbs( grad_y, abs_grad_y ); addWeighted( abs_grad_x, 0.5, abs_grad_y, 0.5, 0, grad ); imshow( window_name, grad ); waitKey(0); return 0;
}

Scharr函数接受参数与Sobel函数相似,这里就不叙述了。

下面我们通过divide函数就能得到一个x/y的矩阵。

对两个输入数组的每个元素执行除操作。

C++: void divide(InputArray src1, InputArray src2, OutputArray dst, double scale=1, int dtype=-1)
C++: void divide(double scale, InputArray src2, OutputArray dst, int dtype=-1)
参数
  • src1 – 第一个输入数组。
  • src2 – 第二个输入数组,必须和第一个数组拥有相同的大小和通道。
  • scale – 缩放系数。
  • dst – 输出数组,和第二个数组拥有相同的大小和通道。
  • dtype – 输出数组中的可选的深度,当两个数组具有相同的深度,此系数可设为-1,意义等同于选择与第一个数组相同的深度。

该函数对两个数组进行除法:

  

或则只是缩放系数除以一个数组:

  

这种情况如果src2是0,那么dst也是0。不同的通道是独立处理的。

被山寨的原文

Sobel Derivatives . OpenCV.org

Image Filtering . OpenCV.org

 
好文要顶 关注我 收藏该文  
2
0
 
 
 
 

ADD YOUR COMMENT

 
  1. #1楼 adamswater 2013-10-14 21:07
    非常有帮助,谢谢!
  2. #2楼[楼主] Justany_WhiteSnow 2013-10-14 21:16
    @ adamswater
    ^_^
  3. #3楼 cv_ml_张欣男 2015-01-31 16:02
    您好,为什么要加一个高斯模糊?GaussianBlur
  4. #4楼[楼主] Justany_WhiteSnow 2015-02-04 21:52
    @ cv_ml_张欣男
    引用您好,为什么要加一个高斯模糊?GaussianBlur
    太久没弄忘了= =不好意思
  5. #5楼 Maddock 2015-05-07 11:06
    不错,程序正确,得到需要效果
  6. #6楼 sansejin0321 2016-04-09 09:26
    你好,为什么看不到图片呢,可以给我发张吗?大四学生写毕业论文需要谢谢你
 
 
发表评论

昵称:

评论内容:
     
 

退出登录 订阅评论

 

[Ctrl+Enter快捷键提交]

 
 
 

About

昵称:Justany_WhiteSnow
园龄:5年1个月
粉丝:335
关注:0

sobel 使用说明的更多相关文章

  1. Sobel Derivatives

    https://docs.opencv.org/2.4/doc/tutorials/imgproc/imgtrans/sobel_derivatives/sobel_derivatives.html ...

  2. Atitit.项目修改补丁打包工具 使用说明

    Atitit.项目修改补丁打包工具 使用说明 1.1. 打包工具已经在群里面.打包工具.bat1 1.2. 使用方法:放在项目主目录下,执行即可1 1.3. 打包工具的原理以及要打包的项目列表1 1. ...

  3. awk使用说明

    原文地址:http://www.cnblogs.com/verrion/p/awk_usage.html Awk使用说明 运维必须掌握的三剑客工具:grep(文件内容过滤器),sed(数据流处理器), ...

  4. “我爱背单词”beta版发布与使用说明

    我爱背单词BETA版本发布 第二轮迭代终于画上圆满句号,我们的“我爱背单词”beta版本已经发布. Beta版本说明 项目名称 我爱背单词 版本 Beta版 团队名称 北京航空航天大学计算机学院  拒 ...

  5. EasyPR--开发详解(3)高斯模糊、灰度化和Sobel算子

    在上篇文章中我们了解了PlateLocate的过程中的所有步骤.在本篇文章中我们对前3个步骤,分别是高斯模糊.灰度化和Sobel算子进行分析. 一.高斯模糊 1.目标 对图像去噪,为边缘检测算法做准备 ...

  6. Oracle 中 union 和union all 的简单使用说明

    1.刚刚工作不久,经常接触oracle,但是对oracle很多东西都不是很熟.今天我们来了解一下union和union all的简单使用说明.Union(union all): 指令的目的是将两个 S ...

  7. Map工具系列-02-数据迁移工具使用说明

    所有cs端工具集成了一个工具面板 -打开(IE) Map工具系列-01-Map代码生成工具说明 Map工具系列-02-数据迁移工具使用说明 Map工具系列-03-代码生成BySQl工具使用说明 Map ...

  8. Map工具系列-03-代码生成BySQl工具使用说明

    所有cs端工具集成了一个工具面板 -打开(IE) Map工具系列-01-Map代码生成工具说明 Map工具系列-02-数据迁移工具使用说明 Map工具系列-03-代码生成BySQl工具使用说明 Map ...

  9. sobel算子的一些细节

    1. 形式 Gy 上下颠倒的 (*A表示卷积图像,忽略先): 看得出来,sobel算子感觉并不统一,特别是方向,我们知道matlab的图像格式是,x轴从左到右,y轴从上到下,原点在左上角. 所以,第二 ...

随机推荐

  1. python学习菜单

    一.python简介 二.python字符串 三.列表 四.集合.元组.字典 五.函数 六.python 模块 七.python 高阶函数 八.python 装饰器 九.python 迭代器与生成器  ...

  2. django中视图处理请求方式(FBV、CBV)

    FBV FBV(function base views) 就是在视图里使用函数处理请求. 在之前django的学习中,我们一直使用的是这种方式,所以不再赘述. CBV CBV(class base v ...

  3. Spark运行模式概述

    Spark编程模型的回顾 spark编程模型几大要素 RDD的五大特征 Application program的组成 运行流程概述 具体流程(以standalone模式为例) 任务调度 DAGSche ...

  4. Swift里的CAP理论和NWR策略应用

    http://blog.sina.com.cn/s/blog_57f61b490101a8ca.html 最近有人讨论到swift副本数是否能够调整,3副本成本过高,如果改成2副本怎么样?多聊了几句以 ...

  5. 玩转laravel5.4的入门动作(二)

    做个文章的增删改查 第一步  把数据库的表结构建好,生成迁移 1 怎么建,当然是用php artisan命令了 使用 Artisan 命令 make:migration 来创建一个新的迁移: php ...

  6. leetcode350

    public class Solution { public int[] Intersect(int[] nums1, int[] nums2) { var len1 = nums1.Length; ...

  7. 万字总结:学习MySQL优化原理,这一篇就够了!

    前言 说起MySQL的查询优化,相信大家收藏了一堆奇技淫巧:不能使用SELECT *.不使用NULL字段.合理创建索引.为字段选择合适的数据类型..... 你是否真的理解这些优化技巧?是否理解其背后的 ...

  8. as3 分发事件无法接收

    最简单的.直接用舞台接收. 如: stage.addEventListener("ok",okH);

  9. Oracle12c部署

    部署环境业务系统与数据库服务部署在一台服务器上了 电脑是台式机没有网络,也没有插网线,需要先建立一个网络回环,然后进行Oracle12c的安装,安装过程中系统会默认勾选创建为容器数据库,需要把这个勾选 ...

  10. MIME(Multipurpose Internet Mail Extensions-多用途互联网邮件扩展)

    MIME MIME(Multipurpose Internet Mail Extensions)多用途互联网邮件扩展类型.是设定某种扩展名的文件用一种应用程序来打开的方式类型,当该扩展名文件被访问的时 ...