DZY Love Math 系列

[BOZJ3309] DZY Loves Math

顺着套路就能得到:\(Ans = \sum_{T=1}\lfloor \frac{n}{T} \rfloor \lfloor \frac{m}{T} \rfloor \sum_{d|T} f(d) \mu(\frac{T}{d})\)。
问题变为求\(\sum_{d|T} f(d) \mu(\frac{T}{d})\)。
你可以见这里
你还可以见这里
然而我就是要再写一遍你管我QwQ......
设\(T = \prod_{i=1}^K p_i^{a_i}\),\(d = \prod_{i=1}^Kp_i^{b_i}\),显然有\(a_i\ge b_i\),看到\(\mu\)显然\(|a_i-b_i|\leq 1\)才有意义。
若存在\(a_i>a_j\),则\(b_i\ge b_j\),所以\(b_j\)可以操控符号,即\(f(d) = 0\)。
否则说明\(a_1=a_2...=a_K\),显然只有当\(b_i=a_i-1\)对所有\(i\)都成立时,\(f\)的绝对值大小不一样。
所以\(f(d) = (-1)^{K+1}\),记一下最小质因子和每个数包含的不同质因子数,然后就能线性筛\(f\)了。

[BZOJ3462] DZY Loves Math II

把可用质数\(p\)弄出来,不同的\(p\)不会超过\(7\)个,那么就是求\(\sum_{i=1}^K c_i p_i = n\)的合法\(c_i\)组的个数。
由于\(p_i|S\),所以把方案按照\(c_i\% \frac{S}{p_i}\)后的结果分组,然后背包处理\((S-1)(K+1)\)以内的答案。
每次枚举模后方案的答案\(tS + n\% S\),然后设还需要\(x\)个\(S\),插板分配到\(K\)个质数中即可。

[BZOJ3481] DZY Loves Math III

用扩欧那套理论可得:\(Ans = \sum_{x=1}^{P} gcd(x,P) [gcd(x,P)|Q]\)
枚举\(d = gcd(x,P)\),\(Ans = \sum_{d|P,d|Q} d\varphi(\frac{P}{d})\)。
令\(Q' = gcd(P,Q)\),\(Ans = \sum_{d|P} d[d|Q']\varphi(\frac{P}{d}) = \sum_{d|Q'} d\varphi(\frac{P}{d})\)。
被小胖坑过的童鞋应该都能立刻反应过来这是狄利克雷卷积,只要算每个质因子的答案即可。
枚举一个质因子\(p\),设\(P\)中有\(a\)个,\(Q'\)中有\(b\)个。
若\(a > b\),\(ans(p) = (b + 1)(p-1)p^{a-1}\),若\(a=b\),\(ans(p) = b(p-1)p^{a-1} + p^a\)。
大数分解质因数用一下\(Miller-Rabin\)和\(Pollard-Rho\)就行了。

[BZOJ3512] DZY Loves Math IV

枚举一个\(n\),然后要算\(S(n,m) = \sum_{i=1}^m \varphi(in)\)。
令\(d = gcd(i,n)\)。
顺着套路展开:\(S(n,m) = \sum_{i=1}^m \varphi(i)\varphi(\frac{n}{d})d = \sum_{i=1}^m \varphi(i) \varphi(\frac{n}{d}) \sum_{e|d} \varphi(e)\)。
后面两个玩意合并不了,不过很好解决。
我们设\(n'y = n\),其中\(n'\)为\(n\)的每个质因子各取一个构成的数,\(d' = gcd(i,n')\)。
\(S(n,m) = y\sum_{i=1}^m \varphi(i) \varphi(\frac{n'}{d'})\sum_{e|d'}\varphi(e)\)。
那么此时有\(\frac{n'}{d'} \perp e\),
\(S(n,m) = y\sum_{i=1}^m \varphi(i) \sum_{e|d'}\varphi(\frac{n'}{e}) = y\sum_{i=1}^m \varphi(i) \sum_{e|n',e|i} \varphi(\frac{n'}{e})\)。
\(S(n,m) = y\sum_{e|n'} \varphi(\frac{n'}{e}) \sum_{i=1}^{\lfloor \frac{m}{e} \rfloor} \varphi(ie) = y\sum_{e|n'} \varphi(\frac{n'}{e})S(e,\lfloor \frac{m}{e} \rfloor)\)。
递归做,\(n = 1\)时杜教筛求\(\varphi\)前缀和即可。

[BZOJ3560] DZY Loves Math V

明摆着是叫你算每一个质因子的贡献,然后把它们都乘起来。
考虑欧拉函数\(\varphi(p^t) = (p-1) p^{t-1}\)。
所以每一个质因子的贡献为\((\prod_{i=1}^n (\sum_{j=0}^{c_i} p^j) - 1) (p-1) + 1\),乘起来就行了。

[BZOJ3561] DZY Loves Math VI

顺着套路推(设\(n\leq m\)),可以得到:
\(Ans = \sum_{T=1}^{n} (\sum_{i=1}^{\lfloor \frac{n}{T} \rfloor} i)(\sum_{j=1}^{\lfloor \frac{m}{T} \rfloor} j) \sum_{e|T} (\frac{T}{e})^{\frac{T}{e}} \mu(e) e^{2(\frac{T}{e})}\),暴力算即可。

# DZY Love Math 系列的更多相关文章

  1. DZY Loves Math 系列详细题解

    BZOJ 3309: DZY Loves Math I 题意 \(f(n)\) 为 \(n\) 幂指数的最大值. \[ \sum_{i = 1}^{a} \sum_{j = 1}^{b} f(\gcd ...

  2. DZY Loves Math系列

    link 好久没写数学题了,再这样下去吃枣药丸啊. 找一套应该还比较有意思的数学题来做. [bzoj3309]DZY Loves Math 简单推一下. \[\sum_{i=1}^n\sum_{j=1 ...

  3. [BZOJ] DZY Loves Math 系列 I && II

    为了让自己看起来有点事干 ,做个套题吧..不然老是东翻翻西翻翻也不知道在干嘛... \(\bf 3309: DZY \ Loves \ Math\) 令 \(h=f*\mu\) 很明显题目要求的就是\ ...

  4. BZOJ DZY Loves Math系列

    ⑤(BZOJ 3560) $\Sigma_{i_1|a_1}\Sigma_{i_2|a_2}\Sigma_{i_3|a_3}\Sigma_{i_4|a_4}...\Sigma_{i_n|a_n}\ph ...

  5. [BZOJ3561] DZY Loves Math VI

    (14.10.28改) 本来只想写BZOJ3739:DZY Loves Math VIII的,不过因为和VI有关系,而且也没别人写过VI的题解,那么写下. 不过我还不会插公式…… http://www ...

  6. BZOJ 3309: DZY Loves Math

    3309: DZY Loves Math Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 761  Solved: 401[Submit][Status ...

  7. 【BZOJ】3309: DZY Loves Math 莫比乌斯反演优化

    3309: DZY Loves Math Description 对于正整数n,定义f(n)为n所含质因子的最大幂指数.例如f(1960)=f(2^3 * 5^1 * 7^2)=3, f(10007) ...

  8. BZOJ 3512: DZY Loves Math IV [杜教筛]

    3512: DZY Loves Math IV 题意:求\(\sum_{i=1}^n \sum_{j=1}^m \varphi(ij)\),\(n \le 10^5, m \le 10^9\) n较小 ...

  9. ●BZOJ 3309 DZY Loves Math

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3309 题解: 莫比乌斯反演,线筛 化一化式子: f(x)表示x的质因子分解中的最大幂指数 $ ...

随机推荐

  1. WebGL——水波纹特效

    大家好,今天我ccentry要做一个水波纹特效,我们来看看水波纹特效的做法.首先我们来看一下水波纹特效的效果是怎么样的,请看下图. 我们要做的就是类似这种纹理特效,那么我们来看看是如何制作的吧.首先鲫 ...

  2. Siki_Unity_3-6_UI框架 (基于UGUI)

    Unity 3-6 UI框架 (基于UGUI) 任务1&2&3&4:介绍 && 创建工程 UI框架: 管理场景中所有UI面板 控制面板之间的跳转 如果没有UI框 ...

  3. spring cloud 入门系列:总结

    从我第一次接触Spring Cloud到现在已经有3个多月了,当时是在博客园里面注册了账号,并且看到很多文章都在谈论微服务,因此我就去了解了下,最终决定开始学习Spring Cloud.我在一款阅读A ...

  4. SQL Server存储过程用法介绍

    存储过程其实就是已预编译为可执行过程的一个或多个SQL语句. 通过调用和传递参数即可完成该存储过程的功能. 前面有介绍过存储过程的一些语法,但是没有详细示例,今天我们来一起研究一下存储过程. 提高性能 ...

  5. vue 自定义全局按键修饰符

    在监听键盘事件时,我们经常需要检查常见的键值.Vue 允许为 v-on 在监听键盘事件时添加按键修饰符: JS部分: Vue.config.keyCodes = { f2:113, } var app ...

  6. [转载]java面试中经常会被问到的一些算法的问题

    Java面试中经常会被问到的一些算法的问题,而大部分算法的理论及思想,我们曾经都能倒背如流,并且也能用开发语言来实现过, 可是很多由于可能在项目开发中应用的比较少,久而久之就很容易被忘记了,在此我分享 ...

  7. layui数据表格使用(一:基础篇,数据展示、分页组件、表格内嵌表单和图片)

    表格展示神器之一:layui表格 前言:在写后台管理系统中使用最多的就是表格数据展示了,使用表格组件能提高大量的开发效率,目前主流的数据表格组件有bootstrap table.layui table ...

  8. Scrum Meeting 8 -2014.11.14

    给开发加了个pdf信息提取优化任务. 弄了半天发现服务器也是个好东西.这周末可以和爬虫讨论整合的问题了. Member Today’s task Next task 林豪森 协助测试及服务器部署 协助 ...

  9. 【Alpha版本发布】爬虫队长正在待命!

    一.基础功能简介 本团队的爬虫能够从网上搜索相关内容, 并归类,把所爬到的网页或各种类型的文档下载到本地上. 上届团队Beta版本爬虫的主要功能如下: a)可爬取网页,问答页并进行问答文件分类. b) ...

  10. 树莓派配置RTC时钟(DS3231,I2C接口)

    1.购买基于DS3231的RTC时钟模块,并且支持3.3V的那种 2.配置树莓派 a.打开树莓派的i2c接口 sudo raspi-config -->Interfacing Options - ...