求证:$1+\dfrac{1}{4}+\dfrac{1}{9}+\cdots +\dfrac{1}{n^2}+\cdots = \dfrac{\pi^2}6$.

解答:考虑$$\dfrac{\sin x}x=1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-\dfrac{x^6}{7!}+\cdots +(-1)^n\dfrac{x^{2n}}{(2n+1)!}+\cdots ,$$ 由于$y=\dfrac{\sin x}x$的零点为$x=\pm \pi,\pm 2\pi,\cdots ,\pm n\pi,\cdots ,$

因此$1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}-\dfrac{x^6}{7!}+\cdots +(-1)^n\dfrac{x^{2n}}{(2n+1)!}+\cdots =\left(1-\dfrac{x^2}{\pi^2}\right)\left(1-\dfrac{x^2}{4\pi^2}\right)\cdots \left(1-\dfrac{x^2}{n^2\pi^2}\right)\cdots,$ 对比上式中$x^2$项的系数可得$$1+\dfrac{1}{4}+\dfrac{1}{9}+\cdots +\dfrac{1}{n^2}+\cdots = \dfrac{\pi^2}6.$$

评:此方法是欧拉最早使用的,欧拉以它卓越的分析能力,给出了这个级数和的最早的正确答案,当然站着大学数学分析的角度,这个方法还是显得有些粗糙和冒险。

MT【122】一个重要的不平凡的无穷级数的更多相关文章

  1. 一个快速、完善的Android开发框架整合实践(QuickAndroid)

    https://github.com/alafighting/QuickAndroid QuickAndroid 一个快速.完善的Android开发框架整合实践 QA项目简介 本框架QuickAndr ...

  2. iOS比较常用的第三方及实例(不断更新中)

    把平时看到或项目用到的一些插件进行整理,文章后面分享一些不错的实例,若你有其它的插件欢迎分享,不断的进行更新: 一:第三方插件 1:基于响应式编程思想的oc 地址:https://github.com ...

  3. [学习笔记] Miller-Rabin质数测试 & Pollard-Rho质因数分解

    目录 Miller-Rabin质数测试 & Pollard-Rho质因数分解 Miller-Rabin质数测试 一些依赖的定理 实现以及正确率 Pollard-Rho质因数分解 生日悖论与生日 ...

  4. java: Thread 和 runnable线程类

    java: Thread 和 runnable线程类 Java有2种实现线程的方法:Thread类,Runnable接口.(其实Thread本身就是Runnable的子类) Thread类,默认有ru ...

  5. (转)C++0x语言新特性一览

    转自:http://blog.csdn.net/zwvista/article/details/2429781 原文请见http://en.wikipedia.org/wiki/C%2B%2B0x. ...

  6. C++11:POD数据类型

    版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 啥是POD类型? POD全称Plain Old Data.通俗的讲,一个类或结构体通过二进制拷贝后还能保持其数据不变,那么它就是 ...

  7. STL源码--iterator和traits编程技法

    第一部分 iterator学习 STL iterators定义: 提供一种方法,使之能够依序巡访某个聚合物(容器)所含的各个元素,而又无需暴露该聚合物的内部表达方式. 任何iteartor都应该提供5 ...

  8. c++11 pod类型(了解)

    啥是POD类型? POD全称Plain Old Data.通俗的讲,一个类或结构体通过二进制拷贝后还能保持其数据不变,那么它就是一个POD类型. 平凡的定义 .有平凡的构造函数 .有平凡的拷贝构造函数 ...

  9. 【quick-cocos2d-x】Lua 面向对象(OOP)编程与元表元方法

    版权声明:本文为博主原创文章,转载请注明出处. 面向对象是一种对现实世界理解和抽象的方法,是计算机编程技术发展到一定阶段后的产物. 早期的计算机编程是基于面向过程的方法,通过设计一个算法就可以解决当时 ...

随机推荐

  1. 什么是Gradle

    一.什么是Gradle 简单的说,Gradle是一个构建工具,它是用来帮助我们构建app的,构建包括编译.打包等过程.我们可以为Gradle指定构建规则,然后它就会根据我们的“命令”自动为我们构建ap ...

  2. Python的requests、greenlet和gevent模块在windows下安装

    一.requests模块在windows下安装 Linux系统下requests的安装方法在http://docs.python-requests.org/en/latest/user/install ...

  3. 相机标定与矫正opencv+MATLAB

    博客转载自:http://blog.csdn.net/Loser__Wang/article/details/51811347 本文目的在于记录如何使用MATLAB做摄像机标定,并通过opencv进行 ...

  4. Windows系统环境变量之path环境变量(Java, Python环境变量配置)

    系统: Windows10 path系统环境变量的作用: Windows和DOS操作系统中的path环境变量,当要求系统运行一个程序而没有告诉它程序所在的完整路径时,系统除了在当前目录下面寻找此程序外 ...

  5. python的字符串格式化

    1.python到底有那几种字符串格式化模块? python有3种格式化字符串的方法: 传统的%字符串格式符 str.format函数 字符串模版template 新的python 3.6+还提供了新 ...

  6. Harbor 学习分享系列3 - Harbor用户指南

    云盘链接 链接:https://pan.baidu.com/s/1wvgI3KGGIckqzlkB-mYz4g 密码:doe7 通过本文无法把本文中的实验进行成功,请联系作者本人,作者会录制视频发送给 ...

  7. Hyperledger Fabric chaincode 开发(疑难解答)

    Q&A Q1: 使用fabric release 1.2 进行golang chaincode开发时报错: ..\..\hyperledger\fabric\vendor\github.com ...

  8. 笔试题——C++开发简单记录错误模块

    题目:链接:https://www.nowcoder.com/questionTerminal/67df1d7889cf4c529576383c2e647c48 来源:牛客网 解析及代码来源:http ...

  9. Burp Suite pro 抓包工具配置

    下载地址: 链接:https://pan.baidu.com/s/1WyuAlJSWZ3HyyEQlpiH3cA 提取码:6l38 破解相关请查看解压文件链接 1.firefox代理设置: burp ...

  10. [linux] LVM磁盘管理(针对xfs和ext4不同文件系统)

    简单来说就是:PV:是物理的磁盘分区VG:LVM中的物理的磁盘分区,也就是PV,必须加入VG,可以将VG理解为一个仓库或者是几个大的硬盘LV:也就是从VG中划分的逻辑分区如下图所示PV.VG.LV三者 ...