【BZOJ3884】上帝与集合的正确用法
Description
一句话题意,给定\(p\)作为模数:

\(p\le 10^7\),数据组数\(T\le1000\)。
Solution
看到就弃疗了,再见......
将模数\(p\)拆分成\(p=q2^k\),其中\(q\)为一个奇数。那么:
2^{2^{2...}}mod\; p&=2^k(2^{2^{2..}-k}mod\;q)\\
&=2^k(2^{(2^{2..}-k)mod\;\varphi(q)}mod\;q)
\end{aligned}
\]
考虑递归计算\((2^{2...}-k)\)的\(2^{2...}\),只不过模数由\(p\)变成\(\varphi(q)\)。当模数\(p\)变成1的时候,我们就遇到了边界——不管里面式子如何,模1都是0,直接返回0即可。考虑递归的层数:除了第一次调用的\(p\)可能是奇数之外,往下递归的\(p\)几乎都是偶数(\(\varphi(x),x\ge3\)都是偶数),\(\varphi(q)\)相对于\(p\)大概会减少一倍。直到\(p=1\)时,层数不会太多,dalao说是\(O(log^2p\))。
所以就直接递归计算了。实现上,如果先用线性筛筛出所有的\(\varphi\),太慢。每次调用\(\varphi\)时直接\(O(\sqrt n)\)计算反而更加快。这两种方法,是稳定300ms和6ms的差距......
Code
#include <cstdio>
using namespace std;
const int S=10000001;
inline int ksm(int x,int y,int MOD){
int res=1;
for(;y;x=1LL*x*x%MOD,y>>=1)
if(y&1) res=1LL*res*x%MOD;
return res;
}
int getPhi(int x){
int res=x;
for(int i=2;i*i<=x;i++){
if(!(x%i)) res-=res/i;
while(!(x%i)) x/=i;
}
if(x!=1) res-=res/x;
return res;
}
int calc(int p){
if(p==1) return 0;
int k=0,q=p;
while(!(q&1)) k++,q>>=1;
int phiq=getPhi(q);
int mi=(calc(phiq)-k)%phiq;
if(mi<0) mi+=phiq;
return 1LL*ksm(2,mi,q)*ksm(2,k,p)%p;
}
int main(){
int T,p;
scanf("%d",&T);
while(T--){
scanf("%d",&p);
printf("%d\n",calc(p));
}
return 0;
}
【BZOJ3884】上帝与集合的正确用法的更多相关文章
- bzoj3884上帝与集合的正确用法
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法 拓展欧拉定理
Description 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“ ...
- BZOJ3884: 上帝与集合的正确用法(欧拉函数 扩展欧拉定理)
Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 3860 Solved: 1751[Submit][Status][Discuss] Descripti ...
- bzoj3884 上帝与集合的正确用法
a^b mod P=a^(b mod phi(p)) mod p,利用欧拉公式递归做下去. 代码 #pragma comment(linker,"/STACK:1024000000,1024 ...
- bzoj3884: 上帝与集合的正确用法 欧拉降幂公式
欧拉降幂公式:http://blog.csdn.net/acdreamers/article/details/8236942 糖教题解处:http://blog.csdn.net/skywalkert ...
- bzoj3884: 上帝与集合的正确用法 扩展欧拉定理
题意:求\(2^{2^{2^{2^{...}}}}\%p\) 题解:可以发现用扩展欧拉定理不需要很多次就能使模数变成1,后面的就不用算了 \(a^b\%c=a^{b\%\phi c} gcd(b,c) ...
- bzoj千题计划264:bzoj3884: 上帝与集合的正确用法
http://www.lydsy.com/JudgeOnline/problem.php?id=3884 欧拉降幂公式 #include<cmath> #include<cstdio ...
- BZOJ3884 上帝与集合的正确用法(欧拉函数)
设f(n)为模n时的答案,由2k mod n=2k mod φ(n)+φ(n) mod n(并不会证),且k mod φ(n)=f(φ(n)),直接就可以得到一个递推式子.记搜一发即可. #inclu ...
- bzoj3884: 上帝与集合的正确用法(数论)
感觉是今天洛谷月赛T3的弱化版,会写洛谷T3之后这题一眼就会写了... 还是欧拉扩展定理 于是就在指数上递归%phi(p)+phi(p)直到1,则后面的指数就都没用了,这时候返回,边回溯边快速幂.因为 ...
- [bzoj3884]上帝与集合的正确用法——欧拉函数
题目大意 题解 出题人博客 代码 #include <bits/stdc++.h> using namespace std; const int M = 10001000; int phi ...
随机推荐
- if _ else if _ else,case,程序逻辑判断- java基础
//单个判端 if(){ } //双判端 if(){ }else{ } //多重判端 if(){ }else if(){ }else if(){ }else{ } package test1; // ...
- 如何用Python为你的邮箱加油?还有这种操作!
我来介绍一下我是如何使用 Python 来节省成本的. 我最近在开一辆烧 93 号汽油的车子.根据汽车制造商的说法,它只需要加 91 号汽油就可以了.然而,在美国只能买到 87 号.89 号.93 号 ...
- python爬虫项目(新手教程)之知乎(requests方式)
-前言 之前一直用scrapy与urllib姿势爬取数据,最近使用requests感觉还不错,这次希望通过对知乎数据的爬取为 各位爬虫爱好者和初学者更好的了解爬虫制作的准备过程以及requests请求 ...
- ModelAndView在页面上取值时value="{contextConfigLocation=<NONE>}"
后台: mv.getModel().put("initParam", 1); 页面: <input type="hidden" id="init ...
- Daily Scrum1 11.3
今天是我们团队进入代码实现阶段的第一天,经过一周对上一届项目代码的阅读和研究,队员们已经从代码中分析出我们这次项目将要修改和补充的地方,我们接下来要做的地方就是在两周的时间内将团队项目在alpha阶段 ...
- 20172325 2016-2017-2 《Java程序设计》第四周学习总结
20172325 2016-2017-2 <Java程序设计>第四周学习总结 教材学习内容总结 1.对类.对象.声明变量的定义和属性有了进一步的了解 2.学会如何编写一个类并运用到需要的程 ...
- Beta Scrum Day 3 — 听说
听说
- Beta阶段团队项目开发篇章4
例会时间 2016.12.11 例会照片 个人工作 上阶段任务验收 删除robot功能较为简单,基本实现,但是一直Question版块任务量过大,考虑到最近要进行编译课设第二次测试,为该任务再分配一段 ...
- 字符串拆分函数 func_splitstr
create type str_split is table of varchar2(4000) ; 1 CREATE OR REPLACE FUNCTION splitstr(p_string IN ...
- php 的stdClass类的简单实用
<?php $person = new stdClass(); $person->name = "yu"; $person->sex = "man&qu ...