BZOJ 2243 染色 | 树链剖分模板题进阶版
BZOJ 2243 染色 | 树链剖分模板题进阶版
这道题呢就是个带区间修改的树链剖分
如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了。
这道题要注意的是,无论是线段树上还是原树上,把两个区间的信息合并的时候,要注意中间相邻两个颜色是否相同。
这代码好长啊啊啊啊
幸好一次过了不然我估计永远也De不出来
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define space putchar(' ')
#define enter putchar('\n')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
char readchar(){
char c;
while(c = getchar(), c < 'A' || c > 'Z');
return c;
}
const int N = 100005;
int n, m;
int ecnt, adj[N], nxt[2*N], go[2*N];
int tot, pos[N], idx[N], fa[N], son[N], sze[N], top[N], dep[N], val[N];
int le[4*N], ri[4*N], data[4*N], lazy[4*N];
void add(int u, int v){
go[++ecnt] = v;
nxt[ecnt] = adj[u];
adj[u] = ecnt;
}
void pushup(int k){
data[k] = data[k << 1] + data[k << 1 | 1];
if(ri[k << 1] == le[k << 1 | 1]) data[k]--;
le[k] = le[k << 1], ri[k] = ri[k << 1 | 1];
}
void pushdown(int k){
if(lazy[k] == -1) return;
lazy[k << 1] = lazy[k << 1 | 1] = lazy[k];
le[k << 1] = le[k << 1 | 1] = lazy[k];
ri[k << 1] = ri[k << 1 | 1] = lazy[k];
data[k << 1] = data[k << 1 | 1] = 1;
lazy[k] = -1;
}
void build(int k, int l, int r){
lazy[k] = -1;
if(l == r) return (void)(data[k] = 1, le[k] = ri[k] = val[idx[l]]);
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
pushup(k);
}
void change(int k, int l, int r, int ql, int qr, int x){
if(ql <= l && qr >= r) return (void)(data[k] = 1, le[k] = ri[k] = lazy[k] = x);
pushdown(k);
int mid = (l + r) >> 1;
if(ql <= mid) change(k << 1, l, mid, ql, qr, x);
if(qr > mid) change(k << 1 | 1, mid + 1, r, ql, qr, x);
pushup(k);
}
int query(int k, int l, int r, int ql, int qr){
if(ql <= l && qr >= r) return data[k];
pushdown(k);
int mid = (l + r) >> 1;
if(qr <= mid) return query(k << 1, l, mid, ql, qr);
if(ql > mid) return query(k << 1 | 1, mid + 1, r, ql, qr);
return query(k << 1, l, mid, ql, qr) + query(k << 1 | 1, mid + 1, r, ql, qr) - (ri[k << 1] == le[k << 1 | 1]);
}
int getcol(int k, int l, int r, int p){
if(lazy[k] != -1) return lazy[k];
if(l == r) return le[k];
int mid = (l + r) >> 1;
if(pos[p] <= mid) return getcol(k << 1, l, mid, p);
else return getcol(k << 1 | 1, mid + 1, r, p);
}
void path_change(int u, int v, int x){
if(top[u] == top[v]){
if(pos[u] > pos[v]) swap(u, v);
change(1, 1, n, pos[u], pos[v], x);
return;
}
if(dep[top[u]] > dep[top[v]]) swap(u, v);
change(1, 1, n, pos[top[v]], pos[v], x);
path_change(u, fa[top[v]], x);
}
int path_query(int u, int v){
if(top[u] == top[v]){
if(pos[u] > pos[v]) swap(u, v);
return query(1, 1, n, pos[u], pos[v]);
}
if(dep[top[u]] > dep[top[v]]) swap(u, v);
int same = (getcol(1, 1, n, top[v]) == getcol(1, 1, n, fa[top[v]]));
return path_query(fa[top[v]], u) + query(1, 1, n, pos[top[v]], pos[v]) - same;
}
void init(){
static int que[N], qr;
que[qr = 1] = 1;
for(int ql = 1, u; ql <= qr; ql++){
u = que[ql], sze[u] = 1;
for(int e = adj[u], v; e; e = nxt[e])
if(v = go[e], v != fa[u])
fa[v] = u, dep[v] = dep[u] + 1, que[++qr] = v;
}
for(int ql = qr, u; ql; ql--){
u = que[ql];
sze[fa[u]] += sze[u];
if(sze[u] >= sze[son[fa[u]]]) son[fa[u]] = u;
}
for(int ql = 1, u; ql <= qr; ql++)
if(!top[u = que[ql]])
for(int v = u; v; v = son[v])
idx[++tot] = v, pos[v] = tot, top[v] = u;
build(1, 1, n);
}
int main(){
read(n), read(m);
for(int i = 1; i <= n; i++)
read(val[i]);
for(int i = 1, u, v; i < n; i++)
read(u), read(v), add(u, v), add(v, u);
init();
char op;
int a, b, c;
while(m--){
op = readchar(), read(a), read(b);
if(op == 'Q') write(path_query(a, b)), enter;
else read(c), path_change(a, b, c);
}
return 0;
}
BZOJ 2243 染色 | 树链剖分模板题进阶版的更多相关文章
- BZOJ 2243 染色 树链剖分
题意: 给出一棵树,每个顶点上有个颜色\(c_i\). 有两种操作: C a b c 将\(a \to b\)的路径所有顶点上的颜色变为c Q a b 查询\(a \to b\)的路径上的颜色段数,连 ...
- BZOJ - 2243 染色 (树链剖分+线段树+区间合并)
题目链接 线段树维护区间连续段个数即可.设lc为区间左端点颜色,rc为区间右端点颜色,则合并两区间的时候,如果左区间右端点和右区间左端点颜色相同,则连续段个数-1. 在树链上的区间合并可以定义一个结构 ...
- BZOJ 1036 树的统计Count 树链剖分模板题
题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1036 题目大意: 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将 ...
- bzoj1036 [ZJOI2008]树的统计Count 树链剖分模板题
[ZJOI2008]树的统计Count Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成 一些操作: I. CHANGE u ...
- hysbz 2243 染色(树链剖分)
题目链接:hysbz 2243 染色 题目大意:略. 解题思路:树链剖分+线段树的区间合并,可是区间合并比較简单,节点仅仅要记录左右端点的颜色就可以. #include <cstdio> ...
- 洛谷 P3384 树链剖分(模板题)
题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...
- 洛谷 P2146 [NOI2015]软件包管理器 (树链剖分模板题)
题目描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个 ...
- spoj - Grass Planting(树链剖分模板题)
Grass Planting 题意 给出一棵树,树有边权.每次给出节点 (u, v) ,有两种操作:1. 把 u 到 v 路径上所有边的权值加 1.2. 查询 u 到 v 的权值之和. 分析 如果这些 ...
- P3833 [SHOI2012]魔法树 (树链剖分模板题)
题目链接:https://www.luogu.org/problem/P3833 题目大意:有一颗含有n个节点的树,初始时每个节点的值为0,有以下两种操作: 1.Add u v d表示将点u和v之间的 ...
随机推荐
- 【SIKIA计划】_05_Unity5.3开发2D游戏笔记
一.界面基本操作 01.Project基本分类[Audios]音效[Material]材质[Prefabs]预制[Scenes]场景[Scripts]脚本[Sprites]精灵 02.Project丶 ...
- 微软Word制作自己的模板
我们在用Word的时候,很多时候需要一定的格式. 这个时候,*.dotx文件出场了!它将带给我们自己的模板. 步骤: 首先,新建一个文档,选择空白文档: 图片大就大吧,不要在意这些细节. 编辑一下,保 ...
- Markdown 版本演进
本文作为 Markdown 系列的第二篇,对上一篇使用 Markdown 写技术博客,我踩过的 6个坑博客提到的版本变迁进行简要的提纲说明. 如果不想读文章,请直接看思维导图,使用 Atom + ma ...
- 面向 Web 开发者的 Sublime Text 插件
Package Control 在 Sublime Text 上大家都用 Package Control 来管理安装插件,所以它是我们要安装的第一个插件,安装方法见这里.关于 Package Cont ...
- PHP 包含文件
1.require test123.php <?php $a=1; 运行文件: <?php require('test123.php'); echo 'Hello!'; echo '< ...
- Maven打包jar类库
项目目录>mvn clean compile 编译命令,会在你的项目路径下生成一个target目录,在该目录中包含一个classes文件夹,里面全是生成的class文件及字节码文件. 项目目录& ...
- (xampp)lampp 下配置https(ssl)自签双向认证以后 apache无法启动解决方案
自签CA一般是没有应用场景的,因为需要客户端浏览器导入证书才能访问 但是在某些需要内部使用的场景下,确实是一个解决方案 但是在lampp配置了双向认证以后发现 原来自带的管理命令 lampp star ...
- 输入一个URL到页面呈现其中发生的过程-------http过程详解
在我们点击一个网址,到它能够呈现在浏览器中,展示在我们面前,这个过程中,电脑里,网络上,究竟发生了什么事情. 服务器启动监听模式 那我们就开始了,故事其实并不是从在浏览器的地址栏输入一个网址,或者我们 ...
- Thunder——爱阅app(测评人:方铭)
B.Thunder——爱阅app(测评人:方铭) 一.基于NABCD评论作品,及改进建议 每个小组评论其他小组Alpha发布的作品: 1.根据(不限于)NABCD评论作品的选题: 2.评论作品对选题的 ...
- 互评Beta版本-SkyHunter
基于NABCD评论作品,及改进建议 1.根据(不限于)NABCD评论作品的选题; N(Need,需求):飞机大战题材的游戏对80,90后的人来说算是童年的记忆,可以在闲暇之余打开电脑玩一会儿.但是 ...