BZOJ 2243 染色 | 树链剖分模板题进阶版

这道题呢就是个带区间修改的树链剖分

如何区间修改?跟树链剖分的区间询问一个道理,再加上线段树的区间修改就好了。

这道题要注意的是,无论是线段树上还是原树上,把两个区间的信息合并的时候,要注意中间相邻两个颜色是否相同。

这代码好长啊啊啊啊

幸好一次过了不然我估计永远也De不出来

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
typedef long long ll;
#define space putchar(' ')
#define enter putchar('\n')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c < '0' || c > '9')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
}
char readchar(){
char c;
while(c = getchar(), c < 'A' || c > 'Z');
return c;
}
const int N = 100005;
int n, m;
int ecnt, adj[N], nxt[2*N], go[2*N];
int tot, pos[N], idx[N], fa[N], son[N], sze[N], top[N], dep[N], val[N];
int le[4*N], ri[4*N], data[4*N], lazy[4*N];
void add(int u, int v){
go[++ecnt] = v;
nxt[ecnt] = adj[u];
adj[u] = ecnt;
}
void pushup(int k){
data[k] = data[k << 1] + data[k << 1 | 1];
if(ri[k << 1] == le[k << 1 | 1]) data[k]--;
le[k] = le[k << 1], ri[k] = ri[k << 1 | 1];
}
void pushdown(int k){
if(lazy[k] == -1) return;
lazy[k << 1] = lazy[k << 1 | 1] = lazy[k];
le[k << 1] = le[k << 1 | 1] = lazy[k];
ri[k << 1] = ri[k << 1 | 1] = lazy[k];
data[k << 1] = data[k << 1 | 1] = 1;
lazy[k] = -1;
}
void build(int k, int l, int r){
lazy[k] = -1;
if(l == r) return (void)(data[k] = 1, le[k] = ri[k] = val[idx[l]]);
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
pushup(k);
}
void change(int k, int l, int r, int ql, int qr, int x){
if(ql <= l && qr >= r) return (void)(data[k] = 1, le[k] = ri[k] = lazy[k] = x);
pushdown(k);
int mid = (l + r) >> 1;
if(ql <= mid) change(k << 1, l, mid, ql, qr, x);
if(qr > mid) change(k << 1 | 1, mid + 1, r, ql, qr, x);
pushup(k);
}
int query(int k, int l, int r, int ql, int qr){
if(ql <= l && qr >= r) return data[k];
pushdown(k);
int mid = (l + r) >> 1;
if(qr <= mid) return query(k << 1, l, mid, ql, qr);
if(ql > mid) return query(k << 1 | 1, mid + 1, r, ql, qr);
return query(k << 1, l, mid, ql, qr) + query(k << 1 | 1, mid + 1, r, ql, qr) - (ri[k << 1] == le[k << 1 | 1]);
}
int getcol(int k, int l, int r, int p){
if(lazy[k] != -1) return lazy[k];
if(l == r) return le[k];
int mid = (l + r) >> 1;
if(pos[p] <= mid) return getcol(k << 1, l, mid, p);
else return getcol(k << 1 | 1, mid + 1, r, p);
}
void path_change(int u, int v, int x){
if(top[u] == top[v]){
if(pos[u] > pos[v]) swap(u, v);
change(1, 1, n, pos[u], pos[v], x);
return;
}
if(dep[top[u]] > dep[top[v]]) swap(u, v);
change(1, 1, n, pos[top[v]], pos[v], x);
path_change(u, fa[top[v]], x);
}
int path_query(int u, int v){
if(top[u] == top[v]){
if(pos[u] > pos[v]) swap(u, v);
return query(1, 1, n, pos[u], pos[v]);
}
if(dep[top[u]] > dep[top[v]]) swap(u, v);
int same = (getcol(1, 1, n, top[v]) == getcol(1, 1, n, fa[top[v]]));
return path_query(fa[top[v]], u) + query(1, 1, n, pos[top[v]], pos[v]) - same;
}
void init(){
static int que[N], qr;
que[qr = 1] = 1;
for(int ql = 1, u; ql <= qr; ql++){
u = que[ql], sze[u] = 1;
for(int e = adj[u], v; e; e = nxt[e])
if(v = go[e], v != fa[u])
fa[v] = u, dep[v] = dep[u] + 1, que[++qr] = v;
}
for(int ql = qr, u; ql; ql--){
u = que[ql];
sze[fa[u]] += sze[u];
if(sze[u] >= sze[son[fa[u]]]) son[fa[u]] = u;
}
for(int ql = 1, u; ql <= qr; ql++)
if(!top[u = que[ql]])
for(int v = u; v; v = son[v])
idx[++tot] = v, pos[v] = tot, top[v] = u;
build(1, 1, n);
}
int main(){
read(n), read(m);
for(int i = 1; i <= n; i++)
read(val[i]);
for(int i = 1, u, v; i < n; i++)
read(u), read(v), add(u, v), add(v, u);
init();
char op;
int a, b, c;
while(m--){
op = readchar(), read(a), read(b);
if(op == 'Q') write(path_query(a, b)), enter;
else read(c), path_change(a, b, c);
}
return 0;
}

BZOJ 2243 染色 | 树链剖分模板题进阶版的更多相关文章

  1. BZOJ 2243 染色 树链剖分

    题意: 给出一棵树,每个顶点上有个颜色\(c_i\). 有两种操作: C a b c 将\(a \to b\)的路径所有顶点上的颜色变为c Q a b 查询\(a \to b\)的路径上的颜色段数,连 ...

  2. BZOJ - 2243 染色 (树链剖分+线段树+区间合并)

    题目链接 线段树维护区间连续段个数即可.设lc为区间左端点颜色,rc为区间右端点颜色,则合并两区间的时候,如果左区间右端点和右区间左端点颜色相同,则连续段个数-1. 在树链上的区间合并可以定义一个结构 ...

  3. BZOJ 1036 树的统计Count 树链剖分模板题

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=1036 题目大意: 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将 ...

  4. bzoj1036 [ZJOI2008]树的统计Count 树链剖分模板题

    [ZJOI2008]树的统计Count Description 一棵树上有n个节点,编号分别为1到n,每个节点都有一个权值w.我们将以下面的形式来要求你对这棵树完成 一些操作: I. CHANGE u ...

  5. hysbz 2243 染色(树链剖分)

    题目链接:hysbz 2243 染色 题目大意:略. 解题思路:树链剖分+线段树的区间合并,可是区间合并比較简单,节点仅仅要记录左右端点的颜色就可以. #include <cstdio> ...

  6. 洛谷 P3384 树链剖分(模板题)

    题目描述 如题,已知一棵包含N个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作1: 格式: 1 x y z 表示将树从x到y结点最短路径上所有节点的值都加上z 操作2: 格式 ...

  7. 洛谷 P2146 [NOI2015]软件包管理器 (树链剖分模板题)

    题目描述 Linux用户和OSX用户一定对软件包管理器不会陌生.通过软件包管理器,你可以通过一行命令安装某一个软件包,然后软件包管理器会帮助你从软件源下载软件包,同时自动解决所有的依赖(即下载安装这个 ...

  8. spoj - Grass Planting(树链剖分模板题)

    Grass Planting 题意 给出一棵树,树有边权.每次给出节点 (u, v) ,有两种操作:1. 把 u 到 v 路径上所有边的权值加 1.2. 查询 u 到 v 的权值之和. 分析 如果这些 ...

  9. P3833 [SHOI2012]魔法树 (树链剖分模板题)

    题目链接:https://www.luogu.org/problem/P3833 题目大意:有一颗含有n个节点的树,初始时每个节点的值为0,有以下两种操作: 1.Add u v d表示将点u和v之间的 ...

随机推荐

  1. SQL Operations Studio的安装和使用

    之前管理和访问SQL SERVER使用的自然是SSMS,功能确实很强大的一个数据库图形化管理软件,但是SSMS有个问题就是体积超级大,启动速度也就比较慢.今天我正好要学习一些T-SQL的内容,在微软的 ...

  2. Python发送邮件(最全)

    简单邮件传输协议(SMTP)是一种协议,用于在邮件服务器之间发送电子邮件和路由电子邮件. Python提供smtplib模块,该模块定义了一个SMTP客户端会话对象,可用于使用SMTP或ESMTP侦听 ...

  3. oozie-ext

    安装oozie的时候需要ext的包支持,网站上找了一遍不是没有就是这个csdn下载还需要币,麻蛋...下面给出这个链接,在百度云上,如果失效了,在评论区或者给我留言,再发,一下是ext2.2.zip ...

  4. 前端_html

    目录 HTML介绍 标签说明 常用标签 <!DOCTYPE>标签 <head>内常用标签 <body>内常用标签 特殊字符 其他:各种各样的标签 HTML的规范 H ...

  5. 面向对象程序设计第三次作业-Calculator

    题目: 最终代码: Scan.h: Print.h: Calaulator.cpp: 解题过程 看到题目后,在查询之后明白了这是多文件的题目,然后通过翁凯老师的视频讲解知道了.h和.cpp文件的区别和 ...

  6. Codeforces Round #235 (Div. 2) D. Roman and Numbers 状压dp+数位dp

    题目链接: http://codeforces.com/problemset/problem/401/D D. Roman and Numbers time limit per test4 secon ...

  7. 【我的python之路】

    目录 我的python之路[第一章]字符编码集,数据类型 我的python之路[第二章]循环-内置方法-数据类型 我的python之路[第三章]函数 我的python之路[第四章]装饰器.生成器.迭代 ...

  8. springboot maven

    更多信息请从官网获取https://docs.spring.io/spring-boot/docs/2.0.1.RELEASE 1.parent基于自己项目而非spring-boot-starter- ...

  9. jquery前端第一讲

    1.bootstrap里面的文件是什么意思: bootstrap.cssbootstrap.min.cssbootstrap-responsive.cssbootstrap-responsive.mi ...

  10. ACM的fflush(stdin)的问题

    在最近的刷题过程中,因为用到了很多字符串的操作,有时需要多次清空缓冲区,所以用了fflush(stdin);的语句,确实很好用,但是发现在OJ上提交后会出现runtime error的问题.当时并没有 ...