【BZOJ】【3240】【NOI2013】矩阵游戏
十进制快速幂+矩阵乘法+常数优化
听说这题还可以强行算出来递推式……然后乘乘除除算出来……
然而蒟蒻选择了一个比较暴力的做法= =
我们发现这个递推的过程是线性的,所以可以用矩阵乘法来表示,$x=a*x+b$这样一个递推式我们可以这样表示:$$\begin{bmatrix} x& 1 \end{bmatrix} * \begin{bmatrix} a& 0 \\ b& 1 \end{bmatrix} $$
那么我们可以令$s_1$表示×a+b,$s_2$表示×c+d,那么我们有$$ans=v * ( ({s_1}^{n-1}*s_2)^{m-1} * {s_1}^{n-1} )$$
然而直接算我给TLE了……
下面说一下常数优化:
我们注意到矩阵乘法的时候有:$$\begin{bmatrix} a& 0 \\ b& 1 \end{bmatrix} * \begin{bmatrix} c& 0 \\ d& 1 \end{bmatrix} = \begin{bmatrix} a*c& 0 \\ a*d+b& 1 \end{bmatrix}$$
也就是说:第二列的0和1是一直不动的……那么我们可以将大部分$O(n^3)$的矩阵乘法过程优化到$O(n^2)$。
这里我们${s_1}^{n-1}$出现了两次,那么我们可以用一个中间变量先存下来,可以减少一次运算(毕竟整个算法的主要部分就是在算这几个power)
/**************************************************************
Problem: 3240
User: Tunix
Language: C++
Result: Accepted
Time:7980 ms
Memory:3232 kb
****************************************************************/ //BZOJ 3240
#include<vector>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define rep(i,n) for(int i=0;i<n;++i)
#define F(i,j,n) for(int i=j;i<=n;++i)
#define D(i,j,n) for(int i=j;i>=n;--i)
#define pb push_back
using namespace std;
inline int getint(){
int v=,sign=; char ch=getchar();
while(ch<''||ch>''){ if (ch=='-') sign=-; ch=getchar();}
while(ch>=''&&ch<=''){ v=v*+ch-''; ch=getchar();}
return v*sign;
}
const int N=1e6+,INF=~0u>>,P=1e9+;
typedef long long LL;
/******************tamplate*********************/ struct Matrix{
int v[][];
Matrix(int x=){F(i,,)F(j,,)if(i==j)v[i][j]=x;else v[i][j]=;}
int* operator [] (int x){return v[x];}
}s1,s2,v;
inline Matrix operator * (Matrix a,Matrix b){
Matrix c;
if (a[][]== && a[][]== && b[][]== && b[][]==){
c[][]=(LL)a[][]*b[][]%P;
c[][]=;
c[][]=((LL)a[][]*b[][]+(LL)a[][])%P;
c[][]=;
return c;
}
F(k,,) F(i,,) F(j,,)
c[i][j]=((LL)c[i][j]+(LL)a[i][k]*b[k][j]%P)%P;
return c;
}
inline Matrix Pow(Matrix a,int b){
Matrix c();
F(i,,b) c=c*a;
return c;
}
inline Matrix Power(Matrix a,char* s){
Matrix r(); int l=strlen(s);
D(i,l-,){
if (s[i]-'') r=r*Pow(a,s[i]-'');
a=Pow(a,);
}
return r;
}
char n[N],m[N];
int main(){
#ifndef ONLINE_JUDGE
freopen("3240.in","r",stdin);
freopen("3240.out","w",stdout);
#endif
scanf("%s",n); scanf("%s",m);
int l1=strlen(n)-;
while(n[l1]=='') n[l1--]='';
n[l1]--;
l1=strlen(m)-;
while(m[l1]=='') m[l1--]='';
m[l1]--;
// printf("%s %s\n",n,m);
int a,b,c,d;
a=getint(); b=getint(); c=getint(); d=getint();
v[][]=v[][]=; v[][]=v[][]=;
s1[][]=a; s1[][]=; s1[][]=b; s1[][]=;
s2[][]=c; s2[][]=; s2[][]=d; s2[][]=;
Matrix s3=Power(s1,m);
v=v*(Power(s3*s2,n)*s3);
printf("%d\n",v[][]);
return ;
}
3240: [Noi2013]矩阵游戏
Time Limit: 10 Sec Memory Limit: 256 MB
Submit: 890 Solved: 390
[Submit][Status][Discuss]
Description
婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储)。她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的元素,则F[i][j]满足下面的递推式:
F[1][1]=1
F[i,j]=a*F[i][j-1]+b (j!=1)
F[i,1]=c*F[i-1][m]+d (i!=1)
递推式中a,b,c,d都是给定的常数。
现在婷婷想知道F[n][m]的值是多少,请你帮助她。由于最终结果可能很大,你只需要输出F[n][m]除以1,000,000,007的余数。
Input
一行有六个整数n,m,a,b,c,d。意义如题所述
Output
包含一个整数,表示F[n][m]除以1,000,000,007的余数
Sample Input
Sample Output
HINT
样例中的矩阵为:
1 4 7 10
26 29 32 35
76 79 82 85
1<=N,M<=10^1000 000,a<=a,b,c,d<=10^9
Source
【BZOJ】【3240】【NOI2013】矩阵游戏的更多相关文章
- bzoj 3240: [Noi2013]矩阵游戏 矩阵乘法+十进制快速幂+常数优化
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 613 Solved: 256[Submit][Status] ...
- BZOJ 3240: [Noi2013]矩阵游戏
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 1586 Solved: 698[Submit][Status ...
- BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MB Submit: 123 Solved: 73 [ Submit][ St ...
- BZOJ 3240 [Noi2013]矩阵游戏 ——费马小定理 快速幂
发现是一个快速幂,然而过不去. 怎么办呢? 1.十进制快速幂,可以用来练习卡时. 2.费马小定理,如果需要乘方的地方,可以先%(p-1)再计算,其他地方需要%p,所以需要保存两个数. 然后就是分类讨论 ...
- (十进制高速幂+矩阵优化)BZOJ 3240 3240: [Noi2013]矩阵游戏
题目链接: http://www.lydsy.com/JudgeOnline/problem.php?id=3240 3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec M ...
- 【BZOJ】3240: [Noi2013]矩阵游戏
题意 给出\(n, m(1 \le n, m \le 10^{1000000})\),求\(f(n, m) \ \mod \ 10^9+7\) $$\begin{cases}f(1, 1) = 1 \ ...
- 3240: [Noi2013]矩阵游戏
Description 婷婷是个喜欢矩阵的小朋友,有一天她想用电脑生成一个巨大的n行m列的矩阵(你不用担心她如何存储).她生成的这个矩阵满足一个神奇的性质:若用F[i][j]来表示矩阵中第i行第j列的 ...
- P1397 [NOI2013]矩阵游戏(递推)
P1397 [NOI2013]矩阵游戏 一波化式子,$f[1][m]=a^{m-1}+b\sum_{i=0}^{m-2}a^i$,用快速幂+逆元求等比数列可以做到$logm$ 设$v=a^{m-1}, ...
- bzoj 1059: [ZJOI2007]矩阵游戏 二分图匹配
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1891 Solved: 919[Submit][Statu ...
- BZOJ 1059 [ZJOI2007]矩阵游戏
1059: [ZJOI2007]矩阵游戏 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 2707 Solved: 1322[Submit][Stat ...
随机推荐
- Java 中常见数据类型的相互转换
1.将String 转化成 long , 转化成 double String 转化成 long : long i = Long.parseLong(String s); 或 long i = L ...
- 第一个web程序(ServletRequest , ServletResponse)
一.ServletRequest 1.获取参数的方法(四种) > String getParameter(String name): 根据请求参数的名字, 返回参数值. 若请求参数有多个值(例如 ...
- Linux 服务器上Redis安装和配置
1.下载安装redis 在Linux服务器上,命令行执行以下命令(cd ./usr local/src 一般源码放在这里(推荐源码安装)) wget http://download.redis.io/ ...
- 预备作业02 : 体会做中学(Learning By Doing)
1.你有什么技能比大多人(超过班级90%以上)更好? 如果说不算上玩玻璃球在诸如此类不登大雅之堂的技能,我想我是没有什么比大多数人更好的.我的兴趣还算广泛,但很多东西也只是学到了皮毛而已. 在我上初中 ...
- 变量覆盖漏洞学习及在webshell中的运用
一.发生条件: 函数使用不当($$.extract().parse_str().import_request_variables()等) 开启全局变量 二.基础了解: 1.$$定义 $$代表可变变量, ...
- 移动端h5下ul实现横向滚动css代码
html代码: <ul id="category"> <li>品牌团</li> <li>美体个护</li> <li ...
- Mybatis框架简单使用
Mybatis框架简单使用 环境搭建 新建一个JavaWeb项目,在web\WEB-INF\创建lib文件,并且在其下添加Mybatis的核心包以及依赖包,以及Mysql驱动包,junit4测试包等. ...
- ActiveMQ (三):项目实践
1. 简单项目demo Com.hoo.mq路径下(除了com.hoo.mq.spring)是普通java中使用activeMQ. Com.hoo.mq.spring路径下是非web环境spring集 ...
- luoguP5105 不强制在线的动态快速排序 [官方?]题解 线段树 / set
不强制在线的动态快速排序 题解 算法一 按照题意模拟 维护一个数组,每次直接往数组后面依次添加\([l, r]\) 每次查询时,暴力地\(sort\)查询即可 复杂度\(O(10^9 * q)\),期 ...
- 和程序有关的一个游戏<<mu complex>> 攻略
最速打法: 1 - login, brucedayton 2 - login, allomoto 3 - login, m3g4pa55word 4 - unlock, 03/18/34 5 - ss ...