【题目描述:】

在幻想乡,琪露诺是以笨蛋闻名的冰之妖精。

某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来。但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸。于是琪露诺决定到河岸去追青蛙。

小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子。而且琪露诺按照一种特殊的方式进行移动,当她在格子i时,她只移动到区间[i+l,i+r]中的任意一格。你问为什么她这么移动,这还不简单,因为她是笨蛋啊。

每一个格子都有一个冰冻指数A[i],编号为0的格子冰冻指数为0。当琪露诺停留在那一格时就可以得到那一格的冰冻指数A[i]。琪露诺希望能够在到达对岸时,获取最大的冰冻指数,这样她才能狠狠地教训那只青蛙。

但是由于她实在是太笨了,所以她决定拜托你帮它决定怎样前进。

开始时,琪露诺在编号0的格子上,只要她下一步的位置编号大于N就算到达对岸。

【输入格式:】

第1行:3个正整数N, L, R

第2行:N+1个整数,第i个数表示编号为i-1的格子的冰冻指数A[i-1]

【输出格式:】

一个整数,表示最大冰冻指数。保证不超过231-1

[算法分析:]

一道典型的DP题,已知a[i]为点i的冰冻指数,设f[i]为到达点i时获得的最大冰冻指数

则f[i]的状态是由f[i+l, i+r]转移来的

即f[r]的状态是由f[i-r, i-l]得到的.

可以求得状态转移方程:

  f[i] = max{f[i - j]} + a[i]

  l <= j <= r <= i

时间复杂度为O(n2),n ≤ 200000 的范围显然是超时了.

考虑如何优化:

显然对于求max{f[i - j]}的过程是可以优化的,

用优先队列或者线段树?O(n log2 n)确实是一个很优秀的复杂度,但是还有更优的:

单调队列,时间复杂度为O(n).

每次把一个f[p]值放入deque中,维护序列的单调性(从大到小),

但如果某一次队头的元素的坐标已经不足以跳到当前点了,就要把队首pop出去

所以deque中存放的应是一个结构体或者pair.

那有没有可能在pop队尾的时候把之后的最优解pop掉呢?

现在要加入队列的元素坐标一定比队尾元素要大,而其值也比需要被pop掉的队尾元素大,

所以最优解不管怎么pop都会在队列里。

[Code:]

 //P1725 琪露诺
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
using namespace std; const int MAXN = + ; int n, l, r;
int a[MAXN];
int f[MAXN];
struct Node {
int v, num;
}; deque<Node> q; inline int read() {
int x=, f=; char ch=getchar();
while(ch<'' || ch>'') {
if(ch == '-') f = -;
ch = getchar();
}
while(ch>='' && ch<='')
x=(x<<)+(x<<)+ch-, ch=getchar();
return x * f;
} int main() {
n = read(), l = read(), r = read();
for(int i=; i<=n; ++i)
a[i] = read();
int p = ;
for(int i=l; i<=n; ++i) {
// 求max{f[i-r, i-l]}
// int maxn = 1 << 31;
// int s = i-r<0 ? 0 : i-r;
// for(int j=s; j<=i-l; ++j)
// maxn = max(maxn, f[j]);
while(!q.empty() && q.back().v < f[p])
q.pop_back();
q.push_back((Node){f[p], p});
while(q.front().num + r < i) q.pop_front();
f[i] = q.front().v + a[i];
++p;
}
int ans = << ;
for(int i=n-r+; i<=n; ++i)
ans = max(ans, f[i]);
printf("%d\n", ans);
}

【洛谷】【动态规划+单调队列】P1725 琪露诺的更多相关文章

  1. 洛谷P1725琪露诺(单调队列优化dp)

    P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪 ...

  2. 洛谷 P1725 琪露诺 题解

    P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精. 某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是 ...

  3. P1725 琪露诺

    P1725 琪露诺 单调队列优化dp 对于不是常数转移的dp转移,我们都可以考虑单调队列转移 然而我们要把数组开大 #include<cstdio> #include<algorit ...

  4. luogu P1725 琪露诺

    二次联通门 : luogu P1725 琪露诺 /* luogu P1725 琪露诺 DP + 线段树 用线段树维护dp[i - R] ~ dp[i - L]的最大值 然后 转移方程是 dp[i] = ...

  5. P1725 琪露诺(单调队列优化)

    描述:https://www.luogu.com.cn/problem/P1725 小河可以看作一列格子依次编号为0到N,琪露诺只能从编号小的格子移动到编号大的格子.而且琪露诺按照一种特殊的方式进行移 ...

  6. 洛谷P1725 琪露诺

    传送门啦 本人第一个单调队列优化 $ dp $,不鼓励鼓励? 琪露诺这个题,$ dp $ 还是挺好想的对不,但是暴力 $ dp $ 的话会 $ TLE $ ,所以我们考虑用单调队列优化. 原题中说她只 ...

  7. 洛谷—— P1725 琪露诺

    https://www.luogu.org/problem/show?pid=1725 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这 ...

  8. P1725 琪露诺 题解(单调队列)

    题目链接 琪露诺 解题思路 单调队列优化的\(dp\). 状态转移方程:\(f[i]=max{f[i-l],f[i-l+1],...,f[i-r-1],f[i-r]}+a[i]\) 考虑单调队列优化. ...

  9. 洛谷P1725 琪露诺 (单调队列/堆优化DP)

    显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...

随机推荐

  1. [日常] MySQL的预处理技术测试

    MySQL预处理技术:1.减轻服务器压力2.防止sql注入,把传递过去的危险字符也只当做参数处理3.将sql语句强制一分为二:第一部分为前面相同的命令和结构部分,第二部分为后面可变的数据部分基本使用 ...

  2. [日常] MySQL内存不足启动失败的解决方法

    1.启动mysql时,一直不成功,查看错误日志 /var/log/mysql/error.log 2.主要的错误信息有如下几条: [ERROR] InnoDB: mmap(136151040 byte ...

  3. 使用rem编写自适应屏幕网页造成div被span撑高的解决办法

    原始代码: <html> <head> <meta charset="utf-8"> <meta content="ie=edg ...

  4. 如何优雅的爬取 gzip 格式的页面并保存在本地(java实现)

    1. 引言 在爬取汽车销量数据时需要爬取 html 保存在本地后再做分析,由于一些页面的 gzip 编码格式, 获取后要先解压缩,否则看到的是一片乱码.在网络上仔细搜索了下,终于在这里找到了一个优雅的 ...

  5. win Apache服务消失或无法启动

    在bin目录中找到httpd.exe命令,如下图所示.启动cmd,即命令行,使用管理员身份运行,cd至该bin目录下.   使用cmd执行如下命令进行服务的安装:httpd.exe -k instal ...

  6. Qt架构图及模块分析介绍

    1.Qt框架图: 2.Qt模块组成 通用软件开发模块 QtCore 核心非图形接口类,为其他模块所调用 QtGui GUI(图形用户接口)功能模块 QtMultimedia 提供低级多媒体功能支持的类 ...

  7. python学习之老男孩python全栈第九期_数据库day001知识点总结 —— MySQL操作数据库以及数据表、基本数据类型、基本增删改查、外键定义以及创建

    一. 学习SQL语句规则以及外键 1. 操作文件夹 create database db2; 创建文件夹 create database db2 default charset utf8; 创建文件夹 ...

  8. 慕课网 jQuery 笔记

    $("div").html()是使用标签选择器获取div标签,对应于javascript中的各类选择器 $("*") ——所有元素 $("#lastn ...

  9. IT小鲜肉 Widgets Tree 单选、多选、相关回调函数、获取选中的节点功能

    写一个树控件并没有想象中的那么容易,今天又花了我一个1个多小时,主要为IT小鲜肉 Widgets Tree控件添加了 单选.多选.选择前和选择后两个回调函数.获取选中节点的功能.后面会继续努力完善这个 ...

  10. Linux下卸载安装mysql

    1.卸载命令:# rpm -qa |grep -i mysql # yum remove mysql-community mysql-community-server mysql-community- ...