python3 学习机器学习api

使用了三种集成回归模型

git: https://github.com/linyi0604/MachineLearning

代码:

 from sklearn.datasets import load_boston
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import numpy as np '''
随机森林回归
极端随机森林回归
梯度提升回归 通常集成模型能够取得非常好的表现
''' # 1 准备数据
# 读取波士顿地区房价信息
boston = load_boston()
# 查看数据描述
# print(boston.DESCR) # 共506条波士顿地区房价信息,每条13项数值特征描述和目标房价
# 查看数据的差异情况
# print("最大房价:", np.max(boston.target)) # 50
# print("最小房价:",np.min(boston.target)) # 5
# print("平均房价:", np.mean(boston.target)) # 22.532806324110677 x = boston.data
y = boston.target # 2 分割训练数据和测试数据
# 随机采样25%作为测试 75%作为训练
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) # 3 训练数据和测试数据进行标准化处理
ss_x = StandardScaler()
x_train = ss_x.fit_transform(x_train)
x_test = ss_x.transform(x_test) ss_y = StandardScaler()
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
y_test = ss_y.transform(y_test.reshape(-1, 1)) # 4 三种集成回归模型进行训练和预测
# 随机森林回归
rfr = RandomForestRegressor()
# 训练
rfr.fit(x_train, y_train)
# 预测 保存预测结果
rfr_y_predict = rfr.predict(x_test) # 极端随机森林回归
etr = ExtraTreesRegressor()
# 训练
etr.fit(x_train, y_train)
# 预测 保存预测结果
etr_y_predict = rfr.predict(x_test) # 梯度提升回归
gbr = GradientBoostingRegressor()
# 训练
gbr.fit(x_train, y_train)
# 预测 保存预测结果
gbr_y_predict = rfr.predict(x_test) # 5 模型评估
# 随机森林回归模型评估
print("随机森林回归的默认评估值为:", rfr.score(x_test, y_test))
print("随机森林回归的R_squared值为:", r2_score(y_test, rfr_y_predict))
print("随机森林回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(rfr_y_predict)))
print("随机森林回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(rfr_y_predict))) # 极端随机森林回归模型评估
print("极端随机森林回归的默认评估值为:", etr.score(x_test, y_test))
print("极端随机森林回归的R_squared值为:", r2_score(y_test, gbr_y_predict))
print("极端随机森林回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(gbr_y_predict)))
print("极端随机森林回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(gbr_y_predict))) # 梯度提升回归模型评估
print("梯度提升回归回归的默认评估值为:", gbr.score(x_test, y_test))
print("梯度提升回归回归的R_squared值为:", r2_score(y_test, etr_y_predict))
print("梯度提升回归回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(etr_y_predict)))
print("梯度提升回归回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(etr_y_predict))) '''
随机森林回归的默认评估值为: 0.8391590262557747
随机森林回归的R_squared值为: 0.8391590262557747
随机森林回归的均方误差为: 12.471817322834646
随机森林回归的平均绝对误差为: 2.4255118110236227 极端随机森林回归的默认评估值为: 0.783339502805047
极端随机森林回归的R_squared值为: 0.8391590262557747
极端随机森林回归的均方误差为: 12.471817322834646
极端随机森林回归的平均绝对误差为: 2.4255118110236227 GradientBoostingRegressor回归的默认评估值为: 0.8431187344932869
GradientBoostingRegressor回归的R_squared值为: 0.8391590262557747
GradientBoostingRegressor回归的均方误差为: 12.471817322834646
GradientBoostingRegressor回归的平均绝对误差为: 2.4255118110236227
'''

机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价的更多相关文章

  1. 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价

    python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...

  2. 机器学习之路:python k近邻回归 预测波士顿房价

    python3 学习机器学习api 使用两种k近邻回归模型 分别是 平均k近邻回归 和 距离加权k近邻回归 进行预测 git: https://github.com/linyi0604/Machine ...

  3. 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价

    python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...

  4. 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测

    使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...

  5. 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存

    使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...

  6. 机器学习之路--Python

    常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...

  7. 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

  8. Poisson回归模型

    Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊 ...

  9. 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

    import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...

随机推荐

  1. 【leetcode 简单】 第六十七题 回文链表

    请判断一个链表是否为回文链表. 示例 1: 输入: 1->2 输出: false 示例 2: 输入: 1->2->2->1 输出: true 进阶: 你能否用 O(n) 时间复 ...

  2. 34、Collections工具类简介

    Collections工具类简介 就像数组中的Arrays工具类一样,在集合里面也有跟Arrays类似的工具类Collections package com.sutaoyu.Collections; ...

  3. ORA-00906 missing left parenthesis括号

    Oracle 建表报错:ORA-00906 missing left parenthesis括号    建表语句:create table test(id char,name varchar(1),s ...

  4. mysql5.7.10 源码编译安装记录 (centos6.4)【转】

    一.准备工作 1.1 卸载系统自带mysql 查看系统是否自带MySQL, 如果有就卸载了, 卸载方式有两种yum, rpm, 这里通过yum卸载 rpm -qa | grep mysql //查看系 ...

  5. python3中内建函数map()与reduce()的使用方法

    map()的使用    map()的使用方法形如map(f(x),Itera).对,它有两个参数,第一个参数为某个函数,第二个为可迭代对象.如果不懂什么是函数,不懂什么是可迭代对象没关系,记住下面的例 ...

  6. xshell5 优化方案

    有道云笔记链接-> grep: 过滤 过滤的速度是最快的(相对于另外两个) -v -n -o   显示grep匹配到了什么 grep .  -o -i   --ignore-case -E == ...

  7. Gradle教程链接

    Gradle教程:https://www.yiibai.com/gradle/ https://www.cnblogs.com/wxishang1991/p/5532006.html

  8. git内部原理

    Git 内部原理 无论是从之前的章节直接跳到本章,还是读完了其余章节一直到这——你都将在本章见识到 Git 的内部工作原理 和实现方式. 我们发现学习这部分内容对于理解 Git 的用途和强大至关重要. ...

  9. linux之发送邮件--sendmail服务配置

    新手入门也不知道什么日志分析服务好,鸟哥说logwatch,那我就从logwatch开始吧! logwatch用到了emai发邮件,先从配置邮件发送sendmail开始: 安装sendmail服务,我 ...

  10. 虚拟机 CentOS7 64

    下载地址:https://www.centos.org/download/ 下载完后以后使用虚拟机安装即可