机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价
python3 学习机器学习api
使用了三种集成回归模型
git: https://github.com/linyi0604/MachineLearning
代码:
from sklearn.datasets import load_boston
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor, GradientBoostingRegressor
from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error
import numpy as np '''
随机森林回归
极端随机森林回归
梯度提升回归 通常集成模型能够取得非常好的表现
''' # 1 准备数据
# 读取波士顿地区房价信息
boston = load_boston()
# 查看数据描述
# print(boston.DESCR) # 共506条波士顿地区房价信息,每条13项数值特征描述和目标房价
# 查看数据的差异情况
# print("最大房价:", np.max(boston.target)) # 50
# print("最小房价:",np.min(boston.target)) # 5
# print("平均房价:", np.mean(boston.target)) # 22.532806324110677 x = boston.data
y = boston.target # 2 分割训练数据和测试数据
# 随机采样25%作为测试 75%作为训练
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.25, random_state=33) # 3 训练数据和测试数据进行标准化处理
ss_x = StandardScaler()
x_train = ss_x.fit_transform(x_train)
x_test = ss_x.transform(x_test) ss_y = StandardScaler()
y_train = ss_y.fit_transform(y_train.reshape(-1, 1))
y_test = ss_y.transform(y_test.reshape(-1, 1)) # 4 三种集成回归模型进行训练和预测
# 随机森林回归
rfr = RandomForestRegressor()
# 训练
rfr.fit(x_train, y_train)
# 预测 保存预测结果
rfr_y_predict = rfr.predict(x_test) # 极端随机森林回归
etr = ExtraTreesRegressor()
# 训练
etr.fit(x_train, y_train)
# 预测 保存预测结果
etr_y_predict = rfr.predict(x_test) # 梯度提升回归
gbr = GradientBoostingRegressor()
# 训练
gbr.fit(x_train, y_train)
# 预测 保存预测结果
gbr_y_predict = rfr.predict(x_test) # 5 模型评估
# 随机森林回归模型评估
print("随机森林回归的默认评估值为:", rfr.score(x_test, y_test))
print("随机森林回归的R_squared值为:", r2_score(y_test, rfr_y_predict))
print("随机森林回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(rfr_y_predict)))
print("随机森林回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(rfr_y_predict))) # 极端随机森林回归模型评估
print("极端随机森林回归的默认评估值为:", etr.score(x_test, y_test))
print("极端随机森林回归的R_squared值为:", r2_score(y_test, gbr_y_predict))
print("极端随机森林回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(gbr_y_predict)))
print("极端随机森林回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(gbr_y_predict))) # 梯度提升回归模型评估
print("梯度提升回归回归的默认评估值为:", gbr.score(x_test, y_test))
print("梯度提升回归回归的R_squared值为:", r2_score(y_test, etr_y_predict))
print("梯度提升回归回归的均方误差为:", mean_squared_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(etr_y_predict)))
print("梯度提升回归回归的平均绝对误差为:", mean_absolute_error(ss_y.inverse_transform(y_test),
ss_y.inverse_transform(etr_y_predict))) '''
随机森林回归的默认评估值为: 0.8391590262557747
随机森林回归的R_squared值为: 0.8391590262557747
随机森林回归的均方误差为: 12.471817322834646
随机森林回归的平均绝对误差为: 2.4255118110236227 极端随机森林回归的默认评估值为: 0.783339502805047
极端随机森林回归的R_squared值为: 0.8391590262557747
极端随机森林回归的均方误差为: 12.471817322834646
极端随机森林回归的平均绝对误差为: 2.4255118110236227 GradientBoostingRegressor回归的默认评估值为: 0.8431187344932869
GradientBoostingRegressor回归的R_squared值为: 0.8391590262557747
GradientBoostingRegressor回归的均方误差为: 12.471817322834646
GradientBoostingRegressor回归的平均绝对误差为: 2.4255118110236227
'''
机器学习之路:python 集成回归模型 随机森林回归RandomForestRegressor 极端随机森林回归ExtraTreesRegressor GradientBoostingRegressor回归 预测波士顿房价的更多相关文章
- 机器学习之路: python 线性回归LinearRegression, 随机参数回归SGDRegressor 预测波士顿房价
python3学习使用api 线性回归,和 随机参数回归 git: https://github.com/linyi0604/MachineLearning from sklearn.datasets ...
- 机器学习之路:python k近邻回归 预测波士顿房价
python3 学习机器学习api 使用两种k近邻回归模型 分别是 平均k近邻回归 和 距离加权k近邻回归 进行预测 git: https://github.com/linyi0604/Machine ...
- 机器学习之路: python 回归树 DecisionTreeRegressor 预测波士顿房价
python3 学习api的使用 git: https://github.com/linyi0604/MachineLearning 代码: from sklearn.datasets import ...
- 机器学习之路: python k近邻分类器 KNeighborsClassifier 鸢尾花分类预测
使用python语言 学习k近邻分类器的api 欢迎来到我的git查看源代码: https://github.com/linyi0604/MachineLearning from sklearn.da ...
- 机器学习之路: python 决策树分类DecisionTreeClassifier 预测泰坦尼克号乘客是否幸存
使用python3 学习了决策树分类器的api 涉及到 特征的提取,数据类型保留,分类类型抽取出来新的类型 需要网上下载数据集,我把他们下载到了本地, 可以到我的git下载代码和数据集: https: ...
- 机器学习之路--Python
常用数据结构 1.list 列表 有序集合 classmates = ['Michael', 'Bob', 'Tracy'] len(classmates) classmates[0] len(cla ...
- 吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
- Poisson回归模型
Poisson回归模型也是用来分析列联表和分类数据的一种方法,它实际上也是对数线性模型的一种,不同点是对数线性模型假定频数分布为多项式分布,而泊松回归模型假定频数分布为泊松分布. 首先我们来认识一下泊 ...
- 吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型
import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklear ...
随机推荐
- 【leetcode 简单】 第一百零六题 压缩字符串
给定一组字符,使用原地算法将其压缩. 压缩后的长度必须始终小于或等于原数组长度. 数组的每个元素应该是长度为1 的字符(不是 int 整数类型). 在完成原地修改输入数组后,返回数组的新长度. 进阶: ...
- 2016.5.16——leetcode:Reverse Bits(超详细讲解)
leetcode:Reverse Bits 本题目收获 移位(<< >>), 或(|),与(&)计算的妙用 题目: Reverse bits of a given 3 ...
- 【codeforces】【比赛题解】#851 CF Round #432 (Div.2)
cf真的难…… 点我浏览丧题. [A]Arpa和她对墨西哥人浪的研究 Arpa正在对墨西哥人浪进行研究. 有n个人站成一排,从1到n编号,他们从时刻0开始墨西哥人浪. 在时刻1,第一个人站起来.在时刻 ...
- MODULE_DEVICE_TABLE (二)【转】
转自:http://blog.csdn.net/uruita/article/details/7263290 1. MODULE_DEVICE_TABLE (usb, skel_table);该宏生成 ...
- 关于Java中final关键字的详细介绍
Java中的final关键字非常重要,它可以应用于类.方法以及变量.这篇文章中我将带你看看什么是final关键字?将变量,方法和类声明为final代表了什么?使用final的好处是什么?最后也有一些使 ...
- Git如何设置多个用户
前言 由于我们在使用GitHub时,通常不希望带有公司信息,所以需要独立的Git账户来提交练习代码,本文记录一下如何配置多个Git账户并创建公钥 正文 1.首先进入~/.ssh文件夹 2.然后创建一个 ...
- sqlserver中查询存储过程中的字符串
select name from sysobjects o, syscomments s where o.id = s.id and text like '%querytext%' and o.xty ...
- 19 Error handling and Go go语言错误处理
Error handling and Go go语言错误处理 12 July 2011 Introduction If you have written any Go code you have pr ...
- mysqlbinlog的日志类型
一.mysqlbinlog简介 binlog又叫二进制日志文件,它会将mysql中所有修改数据库数据的Query以二进制的形式记录到日志文件中,如:create,insert,drop,update等 ...
- js权威指南---学习笔记01
1.当函数赋值给对象的属性时,就变为了方法:2.被零整除不报错,只会返回无穷大(Infinity)或者负无穷大.例外:零除以零等于非数字(NaN).3.NaN与任何值都不相等! 4.Javascrip ...