It's not a Bug, It's a Feature!
Time Limit: 5000MS   Memory Limit: 30000K
Total Submissions: 1231   Accepted: 466

Description

It is a curious fact that consumers buying a new software product generally do not expect the software to be bug-free. Can you imagine buying a car whose steering wheel only turns to the right? Or a CD-player that plays only CDs with country music on them? Probably not. But for software systems it seems to be acceptable if they do not perform as they should do. In fact, many software companies have adopted the habit of sending out patches to fix bugs every few weeks after a new product is released (and even charging money for the patches).
Tinyware Inc. is one of those companies. After releasing a new word processing software this summer, they have been producing patches ever since. Only this weekend they have realized a big problem with the patches they released. While all patches fix some bugs, they often rely on other bugs to be present to be installed. This happens because to fix one bug, the patches exploit the special behavior of the program due to another bug.

More formally, the situation looks like this. Tinyware has found a total of n bugs B = {b1, b2, ..., bn} in their software. And they have released m patches p1, p2, ..., pm. To apply patch pi to the software, the bugs Bi
+ in B have to be present in the software, and the bugs Bi
- in B must be absent (of course Bi
+ ∩ Bi
- = Φ). The patch then fixes the bugs Fi
- in B (if they have been present) and introduces the new bugs Fi
+ in B (where, again, Fi
+ ∩ Fi
- = Φ).

Tinyware's problem is a simple one. Given the original version of their software, which contains all the bugs in B, it is possible to apply a sequence of patches to the software which results in a bug- free version of the software? And if so, assuming that every patch takes a certain time to apply, how long does the fastest sequence take?

Input

The input contains several product descriptions. Each description starts with a line containing two integers n and m, the number of bugs and patches, respectively. These values satisfy 1 <= n <= 20 and 1 <= m <= 100. This is followed by m lines describing the m patches in order. Each line contains an integer, the time in seconds it takes to apply the patch, and two strings of n characters each.

The first of these strings describes the bugs that have to be present or absent before the patch can be applied. The i-th position of that string is a ``+'' if bug bi has to be present, a ``-'' if bug bi has to be absent, and a `` 0'' if it doesn't matter whether the bug is present or not.

The second string describes which bugs are fixed and introduced by the patch. The i-th position of that string is a ``+'' if bug bi is introduced by the patch, a ``-'' if bug bi is removed by the patch (if it was present), and a ``0'' if bug bi is not affected by the patch (if it was present before, it still is, if it wasn't, is still isn't).

The input is terminated by a description starting with n = m = 0. This test case should not be processed.

Output

For each product description first output the number of the product. Then output whether there is a sequence of patches that removes all bugs from a product that has all n bugs. Note that in such a sequence a patch may be used multiple times. If there is such a sequence, output the time taken by the fastest sequence in the format shown in the sample output. If there is no such sequence, output ``Bugs cannot be fixed.''.

Print a blank line after each test case.

Sample Input

3 3
1 000 00-
1 00- 0-+
2 0-- -++
4 1
7 0-0+ ----
0 0

Sample Output

Product 1
Fastest sequence takes 8 seconds. Product 2
Bugs cannot be fixed.

Source

好坑的一题 ,刚开始没有考虑到不同走的方法是不等价的,所以错了很多次,用个优先队列就可以了,直接上代码,但不知道,那些0m的是怎么搞的,我把能优化的都优化了啊,像什么二进制,我估计还有什么好的优化方法吧,等以后再看看
#include<stdio.h>
#include<iostream>
#include<string.h>
#include<queue>
using namespace std;
int n,m,time[200],before[2][200],after[2][200],visit[2000000];
struct bugtree{int time ,bugnum;
bool operator <(const bugtree a)const //重载比较函数,为下面队作准备,也可以在外面
{
if(time>a.time)//这里是大于号,要小心这里和下面优先队列的排列顺序是有很大关系的!
return true;
else
return false ;
} };
bool bugcan(int i,bugtree f)//判断是否符合第m种的操作
{
int ignore;
ignore=f.bugnum&(~before[0][i]);//把不用考虑的全部置成0其它的不变
// printf("%d ignore\n",ignore);
if(ignore==before[1][i])//如果在不能有的位置上有1,就要返回假
return true;
return false ;
}
int bfs()
{
int i;
bugtree temp,ss;
priority_queue < bugtree > q;
memset(visit,-1,sizeof(visit));
while(!q.empty())//清空
q.pop();
temp.time=0;
temp.bugnum=(1<<n)-1;
//printf("temp %d\n",temp.bugnum);
visit[temp.bugnum]=temp.time;
q.push(temp);
while(!q.empty())
{
temp=q.top();
q.pop();
if(temp.bugnum==0)
{
return temp.time;//找到最小值,在这里判断会找到最小值
}
for(i=0;i<m;i++)
{ if(bugcan(i,temp))//满足第m条件
{ ss.time=temp.time+time[i];
ss.bugnum=(temp.bugnum|after[0][i])&after[1][i];
// printf("%d i%d ss\n",i,ss.bugnum);
if((visit[ss.bugnum]<0)||(ss.time<visit[ss.bugnum]))//未访问过,或者,时间更少,都加入队列
{
// printf(" i%d %di\n",i,ss.bugnum);
visit[ss.bugnum]=ss.time;
q.push(ss);
} }
}
}
return -1;//没有搜到
}
int main()
{
int i,j,re,tcase;
char c;tcase=1;char strtemp[200];
while(scanf("%d%d",&n,&m)!=EOF)
{ if(n==0&&m==0)
break;
for(i=0;i<m;i++ )
{
scanf("%d",&time[i]);
getchar();
before[0][i]=0;
before[1][i]=0;
after[0][i]=0;
after[1][i]=0;
for( j=0;j<n;j++)//是否能操作,如果把两者分开了,就可以全部用二进制进行操作,对于后面的搜索是非常有用的
{
c=getchar();
before[0][i]=before[0][i]<<1;//是第i个,不能用j
before[1][i]=before[1][i]<<1;//在每一个循环都要左移,为了记录每一个位置的相应的变化
if(c=='0')
{
before[0][i]=before[0][i]|1;//用1来表示是进行操作 }
else if(c=='-')//要将-和0分开,这是两种不同的操作
{
// before[1][i]=before[1][i];//用1来标记是否要这个条件
}
else if(c=='+')
{
before[1][i]=before[1][i]|1;
} }
getchar();//将中间的空格号收掉
for( j=0;j<n;j++)//改掉bug
{
c=getchar();
if(c=='+')
{
after[0][i]=after[0][i]<<1|1;//加用1或,不用管的地方用0
after[1][i]=after[1][i]<<1|1;
}
else if(c=='-')
{
after[0][i]=after[0][i]<<1;
after[1][i]=after[1][i]<<1;//减用0且,不用管的地方用1
}
else if(c=='0')
{
after[0][i]=after[0][i]<<1;
after[1][i]=(after[1][i]<<1)|1;
} }
gets(strtemp);//将最后的回车收掉 }
//printf("%d %dafter \n",after[0][0],after[1][0]);
re=bfs();
printf("Product %d\n",tcase++);
if(re!=-1)
{
printf("Fastest sequence takes %d seconds.\n\n",re);
}
else{ printf("Bugs cannot be fixed.\n\n");
} } return 0;
}

poj1483 It's not a Bug, It's a Feature!的更多相关文章

  1. [有意思]The IT workers of Star Wars -- That's not a bug. It's a feature

    Yeah, that Artoo is kinda mouthy... ... now select, "restore to factory settings." That'll ...

  2. 【最短路】【位运算】It's not a Bug, it's a Feature!

    [Uva658] It's not a Bug, it's a Feature! 题目略 UVA658 Problem PDF上有 试题分析:     本题可以看到:有<=20个潜在的BUG,那 ...

  3. UVA 658 It's not a Bug, it's a Feature! (最短路,经典)

    题意:有n个bug,有m个补丁,每个补丁有一定的要求(比如某个bug必须存在,某个必须不存在,某些无所谓等等),打完出来后bug还可能变多了呢.但是打补丁是需要时间的,每个补丁耗时不同,那么问题来了: ...

  4. UVa 658 (Dijkstra) It's not a Bug, it's a Feature!

    题意: 有n个BUG和m个补丁,每个补丁用一个串表示打补丁前的状态要满足的要求,第二个串表示打完后对补丁的影响,还有打补丁所需要的时间. 求修复所有BUG的最短时间. 分析: 可以用n个二进制位表示这 ...

  5. UVA 658 It's not a Bug, it's a Feature!

    这个题目巧妙之处在于用二进制的每个位1,0分别表示bug的有无,以及实施补丁对相应bug的要求以及实施后的对bug的影响. 软件bug的状态:1表示相应bug仍然存在,0表示已经修复.这样可以将软件的 ...

  6. UVa 658 - It's not a Bug, it's a Feature!(Dijkstra + 隐式图搜索)

    链接: https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem& ...

  7. UVa 658 It's not a Bug, it's a Feature! (状态压缩+Dijstra)

    题意:首先给出n和m,表示有n个bug和m个补丁.一开始存在n个bug,用1表示一个bug存在0表示不存在,所以一开始就是n个1,我们的目的是要消除所有的bug, 所以目标状态就是n个0.对于每个补丁 ...

  8. UVA - 658 It's not a Bug, it's a Feature! (隐式图的最短路,位运算)

    隐式的图搜索,存不下边,所以只有枚举转移就行了,因为bug的存在状态可以用二进制表示,转移的时候判断合法可以用位运算优化, 二进制pre[i][0]表示可以出现的bug,那么u&pre[i][ ...

  9. 洛谷 题解 UVA658 【这不是bug,而是特性 It's not a Bug, it's a Feature!】

    [题意] 补丁在修正\(BUG\)时,有时也会引入新的\(BUG\),假定有\(n(n<=20)\)个潜在\(BUG\),和\(m(m<=100)\)个补丁,每个补丁用两个长度为\(n\) ...

随机推荐

  1. DateTime.ToString("dd/MM/yyyy");后,不能直接Convert.ToDateTime的解决:

    原文:DateTime.ToString("dd/MM/yyyy");后,不能直接Convert.ToDateTime的解决: DateTime.ToString("dd ...

  2. POJ 3070 Fibonacci(矩阵高速功率)

    职务地址:POJ 3070 用这个题学会了用矩阵高速幂来高速求斐波那契数. 依据上个公式可知,第1行第2列和第2行第1列的数都是第n个斐波那契数.所以构造矩阵.求高速幂就可以. 代码例如以下: #in ...

  3. 完整的thinphp+phpexcel实现excel报表的输出(有图有效果)

    准备工作:1.下载phpexcel1.7.6类包:2.解压至TP框架的ThinkPHP\Vendor目录下,改类包文件夹名为PHPExcel176,目录结构如下图:       编写代码(以一个订单汇 ...

  4. 在windows server里,对于同一个账号,禁止或允许多个用户使用该账户,同时登录

    开始 -> 运行 -> gpedit.msc -> 本地计算机 策略 -> 计算机配置 -> 管理模板 -> Windows 组件 -> 远程桌面服务 -&g ...

  5. PHP 7: PHP 变量和常量的定义

    原文:PHP 7: PHP 变量和常量的定义 本章说说变量的定义.如果对于变量和常量的定义,你会注意几个方面呢?你可能会想到: 如何定义变量,它和C# 等语言有什么不同呢? 变量区分大小写吗? PHP ...

  6. C# & WPF 随手小记之一 ——初探async await 实现多线程处理

    嗯...我也是在园子待了不短时间的人了,一直以来汲取着园友的知识,感觉需要回馈什么. 于是以后有空我都会把一些小技巧小知识写下来,有时候可能会很短甚至很简单,但希望能帮到大家咯. 第一篇文章来说说as ...

  7. Mysql高级之事务

    原文:Mysql高级之事务 通俗的说事务: 指一组操作,要么都成功执行,要么都不执行.---->原子性 在所有的操作没有执行完毕之前,其他会话不能够看到中间改变的过程-->隔离性 事务发生 ...

  8. OpenGL绘制棱锥,剔除

    /** * 缓冲区工具类 */public class BufferUtil { /**  * 将浮点数组转换成字节缓冲区  */ public static ByteBuffer arr2ByteB ...

  9. Date与SimpleDateFormat

    Date常用的方法 返回类型 方法名称 备注 Date New Date() 创建当前日期对象 Date New date(long dt) 使用自1970.1.1以后的指定毫秒数创建日期 boole ...

  10. HTML框架集之Frameset与Iframe简单应用

    首先我们要明白此框架集的作用: 实现在一个页面中访问多个html页面的目的Frameset的用法: //定义框架集<frameset><frame src="demo.ht ...