Zeppelin为0.5.6

Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用。

使用其他的spark集群在yarn模式下。

配置:

vi zeppelin-env.sh

添加:

export SPARK_HOME=/usr/crh/current/spark-client
export SPARK_SUBMIT_OPTIONS="--driver-memory 512M --executor-memory 1G"
export HADOOP_CONF_DIR=/etc/hadoop/conf

Zeppelin Interpreter配置

注意:设置完重启解释器。

Properties的master属性如下:

新建Notebook

Tips:几个月前zeppelin还是0.5.6,现在最新0.6.2,zeppelin 0.5.6写notebook时前面必须加%spark,而0.6.2若什么也不加就默认是scala语言。

zeppelin 0.5.6不加就报如下错:

Connect to 'databank:4300' failed
%spark.sql
select count(*) from tc.gjl_test0

报错:

com.fasterxml.jackson.databind.JsonMappingException: Could not find creator property with name 'id' (in class org.apache.spark.rdd.RDDOperationScope)
at [Source: {"id":"2","name":"ConvertToSafe"}; line: 1, column: 1]
at com.fasterxml.jackson.databind.JsonMappingException.from(JsonMappingException.java:148)
at com.fasterxml.jackson.databind.DeserializationContext.mappingException(DeserializationContext.java:843)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.addBeanProps(BeanDeserializerFactory.java:533)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.buildBeanDeserializer(BeanDeserializerFactory.java:220)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.createBeanDeserializer(BeanDeserializerFactory.java:143)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer2(DeserializerCache.java:409)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer(DeserializerCache.java:358)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCache2(DeserializerCache.java:265)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCacheValueDeserializer(DeserializerCache.java:245)
at com.fasterxml.jackson.databind.deser.DeserializerCache.findValueDeserializer(DeserializerCache.java:143)
at com.fasterxml.jackson.databind.DeserializationContext.findRootValueDeserializer(DeserializationContext.java:439)
at com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer(ObjectMapper.java:3666)
at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3558)
at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2578)
at org.apache.spark.rdd.RDDOperationScope$.fromJson(RDDOperationScope.scala:85)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at scala.Option.map(Option.scala:145)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:136)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:187)
at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:297)
at org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:144)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.interpret(ClassloaderInterpreter.java:57)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300)
at org.apache.zeppelin.scheduler.Job.run(Job.java:169)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)

原因:

进入/opt/zeppelin-0.5.6-incubating-bin-all目录下:

# ls lib |grep jackson
jackson-annotations-2.5.0.jar
jackson-core-2.5.3.jar
jackson-databind-2.5.3.jar

将里面的版本换成如下版本:

# ls lib |grep jackson
jackson-annotations-2.4.4.jar
jackson-core-2.4.4.jar
jackson-databind-2.4.4.jar

测试成功!

参考网站

Sparksql也可直接通过hive jdbc连接,只需换端口,如下图:

Zeppelin使用spark解释器的更多相关文章

  1. Zeppelin使用Spark的yarn-client模式

    Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...

  2. Zeppelin0.5.6使用spark解释器

    Zeppelin为0.5.6 Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用. 使用其他的spark集群在yarn模式下. 配置: vi zeppelin ...

  3. Zeppelin添加mysql解释器

    安装Apache zeppelin 1 wget http://apache.fayea.com/zeppelin/zeppelin-0.6.2/zeppelin-0.6.2-bin-all.tgz ...

  4. Zeppelin使用phoenix解释器

    Interpreters设置

  5. Zeppelin 0.6.2使用Spark的yarn-client模式

    Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...

  6. Spark实战2:Zeppelin的安装和SparkSQL使用总结

    zeppelin是spark的web版本notebook编辑器,相当于ipython的notebook编辑器. 一Zeppelin安装 (前提是spark已经安装好) 1 下载https://zepp ...

  7. Ubuntu下基于Saprk安装Zeppelin

    前言 Apache Zeppelin是一款基于web的notebook(类似于ipython的notebook),支持交互式地数据分析,即一个Web笔记形式的交互式数据查询分析工具,可以在线用scal ...

  8. Zeppelin原理简介

    Zeppelin是一个基于Web的notebook,提供交互数据分析和可视化.后台支持接入多种数据处理引擎,如spark,hive等.支持多种语言: Scala(Apache Spark).Pytho ...

  9. Spark in meituan http://tech.meituan.com/spark-in-meituan.html

    Spark在美团的实践 忽略元数据末尾 回到原数据开始处 引言:Spark美团系列终于凑成三部曲了,Spark很强大应用很广泛, 文中Spark交互式开发平台和作业ETL模板的设计都很有启发借鉴意义. ...

随机推荐

  1. svn clean up 出错解决方案

    问题描述:svn执行clean up命令时报错"Previous operation has not finished; run 'cleanup' if it was interrupte ...

  2. 打包apk java 虚拟机内存不足

    解决方案:在android->sdk->build-tools-android-version 中有个 dx.bat dx.bat --dex 命令的dx.bat脚本有这样一句代码 REM ...

  3. DotNetZip 压缩下载

    var fs = Response.OutputStream; using (ZipFile zip = new ZipFile(System.Text.Encoding.UTF8)) //编码是解决 ...

  4. Windows 服务 Error 14001

    如果碰到 windows 服务安装不了或者启动不了,报14001的配置文件错误,那么 可以从.exe.config入手,我这次遇到的是配置中有中文注释导致的. 我把空行以及中文的注释去掉以后,整个世界 ...

  5. GIT 代码管理工具 SourceTree

    什么是git? git是一款开源的分布式版本控制工具 在世界上所有的分布式版本控制工具中,git是最快.最简单.最流行的 git的起源 作者是Linux之父:Linus Benedict Torval ...

  6. hibernate事务控制

    在使用ssh中将事务委托给spring时老是出现事务不可用 经过检查,原因如下: 是因为在hibernate.cfg.xml文件中忘记进行了如下设置: hibernate.current_sessio ...

  7. php 常量定义

    php常量定义及取值  常量在定义时赋值:  不能变 :不能销毁: 具有超全局作用于:常量只能储存标量数据(字符 整型 浮点 ): <?php define("hello", ...

  8. 【 VS 插件开发 】二、了解Vs插件结构

    [ VS 插件开发 ]二.了解Vs插件结构

  9. 利用css来让一个div在页面中垂直居中的方法

    一.如何让一个div在页面中垂直居中(请至少列出三种) 1.距离页面窗口左边框和上边框的距离设置为50%,这个50%就是指页面窗口的宽度和高度的50%,最后将该DIV分别左移和上移,左移和上移的大小就 ...

  10. SQLite模糊查找(like)

    select UserId,UserName,Name,Sex,Birthday,Height,Weight,Role from xqhit_Users where UserName like &qu ...