Zeppelin使用spark解释器
Zeppelin为0.5.6
Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用。
使用其他的spark集群在yarn模式下。
配置:
vi zeppelin-env.sh

添加:
export SPARK_HOME=/usr/crh/current/spark-client
export SPARK_SUBMIT_OPTIONS="--driver-memory 512M --executor-memory 1G"
export HADOOP_CONF_DIR=/etc/hadoop/conf
Zeppelin Interpreter配置

注意:设置完重启解释器。
Properties的master属性如下:

新建Notebook
Tips:几个月前zeppelin还是0.5.6,现在最新0.6.2,zeppelin 0.5.6写notebook时前面必须加%spark,而0.6.2若什么也不加就默认是scala语言。
zeppelin 0.5.6不加就报如下错:
Connect to 'databank:4300' failed
%spark.sql
select count(*) from tc.gjl_test0
报错:
com.fasterxml.jackson.databind.JsonMappingException: Could not find creator property with name 'id' (in class org.apache.spark.rdd.RDDOperationScope)
at [Source: {"id":"2","name":"ConvertToSafe"}; line: 1, column: 1]
at com.fasterxml.jackson.databind.JsonMappingException.from(JsonMappingException.java:148)
at com.fasterxml.jackson.databind.DeserializationContext.mappingException(DeserializationContext.java:843)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.addBeanProps(BeanDeserializerFactory.java:533)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.buildBeanDeserializer(BeanDeserializerFactory.java:220)
at com.fasterxml.jackson.databind.deser.BeanDeserializerFactory.createBeanDeserializer(BeanDeserializerFactory.java:143)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer2(DeserializerCache.java:409)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createDeserializer(DeserializerCache.java:358)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCache2(DeserializerCache.java:265)
at com.fasterxml.jackson.databind.deser.DeserializerCache._createAndCacheValueDeserializer(DeserializerCache.java:245)
at com.fasterxml.jackson.databind.deser.DeserializerCache.findValueDeserializer(DeserializerCache.java:143)
at com.fasterxml.jackson.databind.DeserializationContext.findRootValueDeserializer(DeserializationContext.java:439)
at com.fasterxml.jackson.databind.ObjectMapper._findRootDeserializer(ObjectMapper.java:3666)
at com.fasterxml.jackson.databind.ObjectMapper._readMapAndClose(ObjectMapper.java:3558)
at com.fasterxml.jackson.databind.ObjectMapper.readValue(ObjectMapper.java:2578)
at org.apache.spark.rdd.RDDOperationScope$.fromJson(RDDOperationScope.scala:85)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at org.apache.spark.rdd.RDDOperationScope$$anonfun$5.apply(RDDOperationScope.scala:136)
at scala.Option.map(Option.scala:145)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:136)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.ConvertToSafe.doExecute(rowFormatConverters.scala:56)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:132)
at org.apache.spark.sql.execution.SparkPlan$$anonfun$execute$5.apply(SparkPlan.scala:130)
at org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)
at org.apache.spark.sql.execution.SparkPlan.execute(SparkPlan.scala:130)
at org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:187)
at org.apache.spark.sql.execution.Limit.executeCollect(basicOperators.scala:165)
at org.apache.spark.sql.execution.SparkPlan.executeCollectPublic(SparkPlan.scala:174)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.DataFrame$$anonfun$org$apache$spark$sql$DataFrame$$execute$1$1.apply(DataFrame.scala:1499)
at org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:56)
at org.apache.spark.sql.DataFrame.withNewExecutionId(DataFrame.scala:2086)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$execute$1(DataFrame.scala:1498)
at org.apache.spark.sql.DataFrame.org$apache$spark$sql$DataFrame$$collect(DataFrame.scala:1505)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1375)
at org.apache.spark.sql.DataFrame$$anonfun$head$1.apply(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.withCallback(DataFrame.scala:2099)
at org.apache.spark.sql.DataFrame.head(DataFrame.scala:1374)
at org.apache.spark.sql.DataFrame.take(DataFrame.scala:1456)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:57)
at sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)
at java.lang.reflect.Method.invoke(Method.java:606)
at org.apache.zeppelin.spark.ZeppelinContext.showDF(ZeppelinContext.java:297)
at org.apache.zeppelin.spark.SparkSqlInterpreter.interpret(SparkSqlInterpreter.java:144)
at org.apache.zeppelin.interpreter.ClassloaderInterpreter.interpret(ClassloaderInterpreter.java:57)
at org.apache.zeppelin.interpreter.LazyOpenInterpreter.interpret(LazyOpenInterpreter.java:93)
at org.apache.zeppelin.interpreter.remote.RemoteInterpreterServer$InterpretJob.jobRun(RemoteInterpreterServer.java:300)
at org.apache.zeppelin.scheduler.Job.run(Job.java:169)
at org.apache.zeppelin.scheduler.FIFOScheduler$1.run(FIFOScheduler.java:134)
at java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:471)
at java.util.concurrent.FutureTask.run(FutureTask.java:262)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:178)
at java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:292)
at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
at java.lang.Thread.run(Thread.java:745)
原因:
进入/opt/zeppelin-0.5.6-incubating-bin-all目录下:
# ls lib |grep jackson
jackson-annotations-2.5.0.jar
jackson-core-2.5.3.jar
jackson-databind-2.5.3.jar
将里面的版本换成如下版本:
# ls lib |grep jackson
jackson-annotations-2.4.4.jar
jackson-core-2.4.4.jar
jackson-databind-2.4.4.jar
测试成功!

Sparksql也可直接通过hive jdbc连接,只需换端口,如下图:


Zeppelin使用spark解释器的更多相关文章
- Zeppelin使用Spark的yarn-client模式
Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...
- Zeppelin0.5.6使用spark解释器
Zeppelin为0.5.6 Zeppelin默认自带本地spark,可以不依赖任何集群,下载bin包,解压安装就可以使用. 使用其他的spark集群在yarn模式下. 配置: vi zeppelin ...
- Zeppelin添加mysql解释器
安装Apache zeppelin 1 wget http://apache.fayea.com/zeppelin/zeppelin-0.6.2/zeppelin-0.6.2-bin-all.tgz ...
- Zeppelin使用phoenix解释器
Interpreters设置
- Zeppelin 0.6.2使用Spark的yarn-client模式
Zeppelin版本0.6.2 1. Export SPARK_HOME In conf/zeppelin-env.sh, export SPARK_HOME environment variable ...
- Spark实战2:Zeppelin的安装和SparkSQL使用总结
zeppelin是spark的web版本notebook编辑器,相当于ipython的notebook编辑器. 一Zeppelin安装 (前提是spark已经安装好) 1 下载https://zepp ...
- Ubuntu下基于Saprk安装Zeppelin
前言 Apache Zeppelin是一款基于web的notebook(类似于ipython的notebook),支持交互式地数据分析,即一个Web笔记形式的交互式数据查询分析工具,可以在线用scal ...
- Zeppelin原理简介
Zeppelin是一个基于Web的notebook,提供交互数据分析和可视化.后台支持接入多种数据处理引擎,如spark,hive等.支持多种语言: Scala(Apache Spark).Pytho ...
- Spark in meituan http://tech.meituan.com/spark-in-meituan.html
Spark在美团的实践 忽略元数据末尾 回到原数据开始处 引言:Spark美团系列终于凑成三部曲了,Spark很强大应用很广泛, 文中Spark交互式开发平台和作业ETL模板的设计都很有启发借鉴意义. ...
随机推荐
- bootstrap IE8 相互兼容
针对 IE8 仍然需要额外引入 Respond.js 文件(由于仍然利用了浏览器对媒体查询(media query)的支持,因此还需要做处理) <html lang="zh-cn&qu ...
- Centos 7 系统安装完毕修改网卡名为eth0
从CentOS/RHEL7起,可预见的命名规则变成了默认.这一规则,接口名称被自动基于固件,拓扑结构和位置信息来确定.现在,即使添加或移除网络设备,接口名称仍然保持固定,而无需重新枚举,和坏掉的硬件可 ...
- js的特殊运算符
1)三元条件运算符: c是一个布尔值,当c为true的时候,取冒号左边a的值,否取冒号右边的b的值: 2)逗号运算符: 值从左到右依次计算,取最右边的,例如例子里的val,会取最右边的值3: 特殊运算 ...
- <验证码的产生>C语言---验证码的产生和验证
无论在网页还是软件上登录时候都会遇到验证码的问题,不知道不懂其中奥秘的码友有没有兴趣一起来探讨一下. 其实并没有什么奥秘可言,就是产生随机数,然后让产生的随机数做为字符库(提前做好的数字字母字符串)的 ...
- 在spring拦截器中response输出html标签到页面
@Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object ...
- CSS行高line-height的一些深入理解及应用
一.一些字面意思. “行高”大约是指:一行文字的高度.具体来说是指两行文字间基线之间的距离.基线是在英文字母中用到的一个概念,我们刚学英语使用的那个英语本子每行有四条线,其中底部第二条线就是基线,是a ...
- mysql bit类型数据库中无法显示
表an_bit bit类型字段id select bin(id+0) from an_bit显示二进制 select id+0 from an_bit显示十进制 http://blog.csdn.ne ...
- C#多线程:深入了解线程同步lock,Monitor,Mutex,同步事件和等待句柄(中)
本篇继续介绍WaitHandler类及其子类 Mutex,ManualResetEvent,AutoResetEvent的用法..NET中线程同步的方式多的让人看了眼花缭乱,究竟该怎么去理解呢?其实, ...
- iframe标签使用总结与注意问题
子页面访问父父页面变量,函数,页面元素 //变量: //在父页面中需定义为全局变量 //子页面中调用 var childFrameVar= parent.ParentVarName; //函数: pa ...
- Express ( MiddleWare/中间件 路由 在 Express 中使用模板引擎 常用API
A fast, un-opinionated, minimalist web framework for Node.js applications. In general, prefer simply ...