这道题吗= =首先解决了我多年以来对仙人掌图的疑问,原来这种高大上的东西原来是这个啊= =

然后,看到这种题,首先必须的就是缩点= =

缩点完之后呢,变成在树上找最长路了= =直接树形dp了

那么那些环呢,就是一个环形dp了,可以先把它拆成一条链,然后注意到最长路径=max(f[i]+f[j]-dist(i,j))  拆成链的话dist(i,j)=i-j 然后就发现dist(i,j)有单调性,就可以用单调队列优化了= =

这样写就可以a了= =

ps1:今天发现有人给我留言了真开心QAQ 感觉自己写了这么久还是有人看到的QAQ 继续加油吧!!!

ps2:bzoj的808端口坏了现在上都得改网址真麻烦QAQ

ps3:刷了好久感觉没啥精神了这个月感觉刷不了多少了QAQ 所以众多STOI补番队的成员啊,这个月的占领头版计划就交给你们了QAQ

CODE:

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
using namespace std;
#define maxn 50100
#define maxm 20000100
struct edges{
 int to,next;
}edge[maxm];
int l,next[maxn];
int addedge(int x,int y){
 edge[++l]=(edges){y,next[x]};next[x]=l;
 edge[++l]=(edges){x,next[y]};next[y]=l;
 return 0;
}
int f[maxn],q[maxn*2],ans,que[maxn],pre[maxn],dep[maxn];
int dp(int y,int x ){
 int l=dep[y]-dep[x]+1;
 int t=y;
 while (l) {
  q[l--]=f[t];
  t=pre[t];
 }
 l=dep[y]-dep[x]+1;
 for (int i=1;i<=l;i++) q[i+l]=q[i];
 int h=0;
 t=1;
 for (int i=2;i<=(l>>1)+1;i++) {
  while (h>=t&&que[h]+q[que[h]]<=i+q[i]) h--;
  que[++h]=i;
 }
 int j=(l>>1)+1;
 for (int i=1;i<=(l<<1)-(l>>1);i++){
  while (h>=t&&que[t]<=i) t++;
  ans=max(ans,que[t]+q[que[t]]+q[i]-i);
  j++;
  while (h>=t&&que[h]+q[que[h]]<=j+q[j]) h--;
  que[++h]=j;
 }
 for (int i=2;i<=l;i++) f[x]=max(f[x],min(i-1,l-i+1)+q[i]);
 return 0;
}
int low[maxn],dfn[maxn],clo;
int dfs(int u,int fa){
 pre[u]=fa;
 dep[u]=dep[fa]+1;
 low[u]=dfn[u]=++clo;
 for (int i=next[u];i;i=edge[i].next)
  if (edge[i].to!=fa) {
   if (!low[edge[i].to]){
    dfs(edge[i].to,u);
    low[u]=min(low[u],low[edge[i].to]);
   }else low[u]=min(low[u],dfn[edge[i].to]);
   if (dfn[u]<low[edge[i].to]) {
    ans=max(ans,f[u]+f[edge[i].to]+1);
    f[u]=max(f[u],f[edge[i].to]+1);
   }
  }
 for (int i=next[u];i;i=edge[i].next)
  if (pre[edge[i].to]!=u&&dfn[u]<dfn[edge[i].to]) dp(edge[i].to,u);
 return 0;
}
int main(){
 int n,m;
 scanf("%d%d",&n,&m);
 for (int i=1;i<=m;i++) {
  int k,x,y;
  scanf("%d",&k);
  scanf("%d",&x);
  for (int j=2;j<=k;j++) {
   scanf("%d",&y);
   addedge(x,y);
   swap(x,y);
  }
 }
 dfs(1,0);
 printf("%d\n",ans); 
 return 0;
}

1023: [SHOI2008]cactus仙人掌图(DP+单调队列优化)的更多相关文章

  1. BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)

    题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过 ...

  2. bzoj 1023: [SHOI2008]cactus仙人掌图 tarjan缩环&&环上单调队列

    1023: [SHOI2008]cactus仙人掌图 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1141  Solved: 435[Submit][ ...

  3. bzoj 1023: [SHOI2008]cactus仙人掌图

    这道题是我做的第一道仙人掌DP,小小纪念一下…… 仙人掌DP就是环上的点环状DP,树上的点树上DP.就是说,做一遍DFS,DFS的过程中处理出环,环上的点先不DP,先把这些换上的点的后继点都处理出来, ...

  4. bzoj 1023: [SHOI2008]cactus仙人掌图【tarjan+dp+单调队列】

    本来想先求出点双再一个一个处理结果写了很长发现太麻烦 设f[u]为u点向下的最长链 就是再tarjan的过程中,先照常处理,用最长儿子链和次长儿子链更新按ans,然后处理以这个点为根的环,也就是这个点 ...

  5. 1023: [SHOI2008]cactus仙人掌图 - BZOJ

    Description如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的回路 ...

  6. 【刷题】BZOJ 1023 [SHOI2008]cactus仙人掌图

    Description 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一个顶点的 ...

  7. bzoj 1023: [SHOI2008]cactus仙人掌图 2125: 最短路 4728: 挪威的森林 静态仙人掌上路径长度的维护系列

    %%% http://immortalco.blog.uoj.ac/blog/1955 一个通用的写法是建树,对每个环建一个新点,去掉环上的边,原先环上每个点到新点连边,边权为点到环根的最短/长路长度 ...

  8. 【BZOJ】1023: [SHOI2008]cactus仙人掌图 静态仙人掌(DFS树)

    [题意]给定仙人掌图(每条边至多在一个简单环上),求直径(最长的点对最短路径).n<=50000,m<=10^7. [算法]DFS树处理仙人掌 [题解]参考:仙人掌相关问题的处理方法(未完 ...

  9. [BZOJ1023][SHOI2008]cactus仙人掌图 DP

    题目链接 套路就是先考虑一般的树上做法.求直径的dp的做法大家应该都会吧. 那么设\(dp[i]\)表示\(i\)的子树中的点到\(i\)的最大距离. 在dp的过程中 \[ ans=\max\{dp[ ...

随机推荐

  1. oracle系列--解锁数据库

    一.安装完成后解锁Scott数据库步骤: 进入SQL Plus 请输入用户名:sys输入口令:sys as sysdba  //这里的口令是不可见的,注意空格SQL> alter user sc ...

  2. jdk1.8中的for循环

    jdk1.8 从语法角度,感觉发生的变化还是蛮大的.在此记录一下. for 循环 public static void main(String[] args) { List<Animal> ...

  3. PHP快速按行读取CSV大文件的封装类分享(也适用于其它超大文本文件)

    CSV大文件的读取已经在前面讲述过了(PHP按行读取.处理较大CSV文件的代码实例),但是如何快速完整的操作大文件仍然还存在一些问题. 1.如何快速获取CSV大文件的总行数? 办法一:直接获取文件内容 ...

  4. delphi的ArrayList

    本文转载自Top.hand<delphi的ArrayList>   delphi可以用Classes.TList类来实现ArrayList功能.注意:add()方法存入的类型是TPoint ...

  5. EverNote剪藏插件安装问题

    安装EverNote印象笔记的剪藏插件时出现插件不能使用的问题,可以采用如下的方法(可以参考知乎的解决办法:https://www.zhihu.com/question/29875051) (下载地址 ...

  6. Usermod:user oracle is currently logged in 家目录不能改变解决方法

    [root@HE1 ~]# usermod -u 200 -g oinstall -G dba,asmdba,oper oracle[root@HE1 ~]# id oracleuid=200(ora ...

  7. 添加redo日志组和添加日志组多元化

    查看redo日志组的状态和日志的位置. SQL> 没有被使用,所以切几次日志,组合4已生效. SQL> select * from v$log; GROUP#   THREAD#  SEQ ...

  8. redhat6.4下安装Oracle11g

    一.在Root用户下执行以下步骤: 1)修改用户的SHELL的限制,修改/etc/security/limits.conf文件 *               soft    nproc  2047 ...

  9. NamingException with message: Name [spring.liveBeansView.mbeanDomain]

    spring mvc启动出现 NamingException with message: Name [spring.liveBeansView.mbeanDomain],解决方式: 在web.xml中 ...

  10. webview 设置编码

    WebSettings settings = webView.getSettings(); // 设置页面编码 settings.setDefaultTextEncodingName("ut ...