B. DZY Loves FFT
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

DZY loves Fast Fourier Transformation, and he enjoys using it.

Fast Fourier Transformation is an algorithm used to calculate convolution. Specifically, if ab and c are
sequences with length n, which are indexed from 0 to n - 1,
and

We can calculate c fast using Fast Fourier Transformation.

DZY made a little change on this formula. Now

To make things easier, a is a permutation of integers from 1 to n,
and b is a sequence only containing 0 and 1.
Given a and b, DZY needs your help to calculate c.

Because he is naughty, DZY provides a special way to get a and b.
What you need is only three integers ndx.
After getting them, use the code below to generate a and b.

//x is 64-bit variable;
function getNextX() {
x = (x * 37 + 10007) % 1000000007;
return x;
}
function initAB() {
for(i = 0; i < n; i = i + 1){
a[i] = i + 1;
}
for(i = 0; i < n; i = i + 1){
swap(a[i], a[getNextX() % (i + 1)]);
}
for(i = 0; i < n; i = i + 1){
if (i < d)
b[i] = 1;
else
b[i] = 0;
}
for(i = 0; i < n; i = i + 1){
swap(b[i], b[getNextX() % (i + 1)]);
}
}

Operation x % y denotes remainder after division x by y.
Function swap(x, y) swaps two values x and y.

Input

The only line of input contains three space-separated integers n, d, x (1 ≤ d ≤ n ≤ 100000; 0 ≤ x ≤ 1000000006).
Because DZY is naughty, x can't be equal to 27777500.

Output

Output n lines, the i-th line should contain an integer ci - 1.

Sample test(s)
input
3 1 1
output
1
3
2
input
5 4 2
output
2
2
4
5
5
input
5 4 3
output
5
5
5
5
4
Note

In the first sample, a is [1 3 2], b is [1
0 0], so c0 = max(1·1) = 1, c1 = max(1·0, 3·1) = 3, c2 = max(1·0, 3·0, 2·1) = 2.

In the second sample, a is [2 1 4 5 3], b is [1
1 1 0 1].

In the third sample, a is [5 2 1 4 3], b is [1
1 1 1 0].

这题解法‘朴素’得难以置信

转载自http://codeforces.com/blog/entry/12959

Firstly, you should notice that AB are given randomly.

Then there're many ways to solve this problem, I just introduce one of them.

This algorithm can get Ci one
by one. Firstly, choose an s. Then check if Ci equals
to n, n - 1, n - 2... n - s + 1. If none of is the answer, just calculate Ci by
brute force.

The excepted time complexity to calculate Ci - 1 is
around

where .

Just choose an s to make the formula as small as possible. The worst excepted number of operations is around tens of million.

对于每次询问:

先暴力枚举,看看答案在不在[n-s+1,n]中

否则暴力。

复杂度=O(s+(tot'0'/i)^s*tot'1')

(tot'0'/i)^s表示[n,n-s+1]中没有答案

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (100000+10)
#define MAXX (1000000006+1)
#define N_MAXX (27777500)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
ll n,d,x;
int i,a[MAXN],b[MAXN];
//x is 64-bit variable;
ll getNextX() {
x = (x * 37 + 10007) % 1000000007;
return x;
}
void initAB() {
for(i = 0; i < n; i = i + 1){
a[i] = i + 1;
}
for(i = 0; i < n; i = i + 1){
swap(a[i], a[getNextX() % (i + 1)]);
}
for(i = 0; i < n; i = i + 1){
if (i < d)
b[i] = 1;
else
b[i] = 0;
}
for(i = 0; i < n; i = i + 1){
swap(b[i], b[getNextX() % (i + 1)]);
}
} int q[MAXN]={0},h[MAXN]={0};
int main()
{
// freopen("FFT.in","r",stdin);
// freopen("FFT.out","w",stdout); cin>>n>>d>>x;
initAB(); Rep(i,n) if (b[i]) q[++q[0]]=i;
Rep(i,n) h[a[i]]=i; // Rep(i,n) cout<<a[i]<<' ';cout<<endl;
// Rep(i,n) cout<<b[i]<<' ';cout<<endl; Rep(i,n)
{
int s=30,ans=0;
Rep(j,30)
{
if (n-j<=0) break;
int t=h[n-j];
if (t<=i&&b[i-t]) {ans=n-j; break;}
}
if (!ans)
{
For(j,q[0])
{
int t=q[j];
if (t>i) break;
ans=max(ans,a[i-t]*b[t]);
}
} printf("%d\n",ans); } return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

CF 444B(DZY Loves FFT-时间复杂度)的更多相关文章

  1. Codeforces #254 div1 B. DZY Loves FFT 暴力乱搞

    B. DZY Loves FFT 题目连接: http://codeforces.com/contest/444/problem/B Description DZY loves Fast Fourie ...

  2. CF 444C DZY Loves Physics(图论结论题)

    题目链接: 传送门 DZY Loves Chemistry time limit per test1 second     memory limit per test256 megabytes Des ...

  3. CF 445B DZY Loves Chemistry(并查集)

    题目链接: 传送门 DZY Loves Chemistry time limit per test:1 second     memory limit per test:256 megabytes D ...

  4. CF 444A(DZY Loves Physics-低密度脂蛋白诱导子图)

    A. DZY Loves Physics time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. Cf 444C DZY Loves Colors(段树)

    DZY loves colors, and he enjoys painting. On a colorful day, DZY gets a colorful ribbon, which consi ...

  6. CF A. DZY Loves Hash

    A. DZY Loves Hash time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  7. CF 445A(DZY Loves Chessboard-BW填充)

    A. DZY Loves Chessboard time limit per test 1 second memory limit per test 256 megabytes input stand ...

  8. (CF)Codeforces445A DZY Loves Chessboard(纯实现题)

    转载请注明出处:http://blog.csdn.net/u012860063? viewmode=contents 题目链接:http://codeforces.com/problemset/pro ...

  9. CF 445B(DZY Loves Chemistry-求连通块)

    B. DZY Loves Chemistry time limit per test 1 second memory limit per test 256 megabytes input standa ...

随机推荐

  1. Windows Server时间服务器配置方法

    1 时间服务器经常会碰到客户端机器需要和服务器在时间上保持同步,否则会出现各种问题,特别是有时间相关的触发功能的时候. 为解决各设备间时间统一的问题,我们可在网络中设置一台服务器使其作为基准时间,其它 ...

  2. web.xml的运行顺序

    整体上的顺序为 <context-param> <listener> <filter> <servlet> 往下依次运行. 当中,每一个类别内部都是按序 ...

  3. 设计模式六大原则(4):接口隔离原则(Interface Segregation Principle)

    接口隔离原则: 使用多个专门的接口比使用单一的总接口要好. 一个类对另外一个类的依赖性应当是建立在最小的接口上的. 一个接口代表一个角色,不应当将不同的角色都交给一个接口.没有关系的接口合并在一起,形 ...

  4. Android的目录结构说明

  5. WPF实现无窗体鼠标跟随

    原文:WPF实现无窗体鼠标跟随 上次的弹力模拟动画实现后,我觉得可以把这个弄得更好玩一些,我们可以让小球实时跟随着鼠标,并且还可以让窗口完全消失,让小球在桌面上飞来飞去. 这只需要一些简单的修改就可以 ...

  6. 无法打开登录所请求的数据库 "ASPState"。登录失败。 用户 'NT AUTHORITY/SYSTEM' 登录失败。

    原文:无法打开登录所请求的数据库 "ASPState".登录失败. 用户 'NT AUTHORITY/SYSTEM' 登录失败. 无法打开登录 'ASPState' 中请求的数据库 ...

  7. Web Worker在WebKit中的实现机制

    web worker 是执行在后台的 JavaScript,独立于其它脚本.不会影响页面的性能.这是HTML5的一个标准:实现上讲.浏览器为wokrer启动了新的线程,从而实现了异步操作的功能; 以下 ...

  8. 网络协议——IP

    IPv4地址 不论什么网络设备能够经过一个网络接口卡(NIC)接入网,假定该设备要能够访问的其它设备,然后该卡必须有一个唯一的地址.候接入多个网络,相应地该设备就有多个地址.假设这个设备是主机的话.一 ...

  9. 线段树(单点更新and成段更新)

    线段树需要的空间. 区间为1-->n 假设是一棵完全二叉树,且树高为i. 完全二叉树性质:第i层最多有2^(i-1)个结点. 那么 2^(i-1) = n;     i = log2(n)  + ...

  10. ECToch随笔

    1.去掉后台Powered by ECTouch.Cn mobile\include\apps\admin\view\index.php第五行<title>{$lang['cp_home' ...