B. DZY Loves FFT
time limit per test

1 second

memory limit per test

256 megabytes

input

standard input

output

standard output

DZY loves Fast Fourier Transformation, and he enjoys using it.

Fast Fourier Transformation is an algorithm used to calculate convolution. Specifically, if ab and c are
sequences with length n, which are indexed from 0 to n - 1,
and

We can calculate c fast using Fast Fourier Transformation.

DZY made a little change on this formula. Now

To make things easier, a is a permutation of integers from 1 to n,
and b is a sequence only containing 0 and 1.
Given a and b, DZY needs your help to calculate c.

Because he is naughty, DZY provides a special way to get a and b.
What you need is only three integers ndx.
After getting them, use the code below to generate a and b.

//x is 64-bit variable;
function getNextX() {
x = (x * 37 + 10007) % 1000000007;
return x;
}
function initAB() {
for(i = 0; i < n; i = i + 1){
a[i] = i + 1;
}
for(i = 0; i < n; i = i + 1){
swap(a[i], a[getNextX() % (i + 1)]);
}
for(i = 0; i < n; i = i + 1){
if (i < d)
b[i] = 1;
else
b[i] = 0;
}
for(i = 0; i < n; i = i + 1){
swap(b[i], b[getNextX() % (i + 1)]);
}
}

Operation x % y denotes remainder after division x by y.
Function swap(x, y) swaps two values x and y.

Input

The only line of input contains three space-separated integers n, d, x (1 ≤ d ≤ n ≤ 100000; 0 ≤ x ≤ 1000000006).
Because DZY is naughty, x can't be equal to 27777500.

Output

Output n lines, the i-th line should contain an integer ci - 1.

Sample test(s)
input
3 1 1
output
1
3
2
input
5 4 2
output
2
2
4
5
5
input
5 4 3
output
5
5
5
5
4
Note

In the first sample, a is [1 3 2], b is [1
0 0], so c0 = max(1·1) = 1, c1 = max(1·0, 3·1) = 3, c2 = max(1·0, 3·0, 2·1) = 2.

In the second sample, a is [2 1 4 5 3], b is [1
1 1 0 1].

In the third sample, a is [5 2 1 4 3], b is [1
1 1 1 0].

这题解法‘朴素’得难以置信

转载自http://codeforces.com/blog/entry/12959

Firstly, you should notice that AB are given randomly.

Then there're many ways to solve this problem, I just introduce one of them.

This algorithm can get Ci one
by one. Firstly, choose an s. Then check if Ci equals
to n, n - 1, n - 2... n - s + 1. If none of is the answer, just calculate Ci by
brute force.

The excepted time complexity to calculate Ci - 1 is
around

where .

Just choose an s to make the formula as small as possible. The worst excepted number of operations is around tens of million.

对于每次询问:

先暴力枚举,看看答案在不在[n-s+1,n]中

否则暴力。

复杂度=O(s+(tot'0'/i)^s*tot'1')

(tot'0'/i)^s表示[n,n-s+1]中没有答案

#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#include<functional>
#include<iostream>
#include<cmath>
#include<cctype>
#include<ctime>
using namespace std;
#define For(i,n) for(int i=1;i<=n;i++)
#define Fork(i,k,n) for(int i=k;i<=n;i++)
#define Rep(i,n) for(int i=0;i<n;i++)
#define ForD(i,n) for(int i=n;i;i--)
#define RepD(i,n) for(int i=n;i>=0;i--)
#define Forp(x) for(int p=pre[x];p;p=next[p])
#define Lson (x<<1)
#define Rson ((x<<1)+1)
#define MEM(a) memset(a,0,sizeof(a));
#define MEMI(a) memset(a,127,sizeof(a));
#define MEMi(a) memset(a,128,sizeof(a));
#define INF (2139062143)
#define F (100000007)
#define MAXN (100000+10)
#define MAXX (1000000006+1)
#define N_MAXX (27777500)
long long mul(long long a,long long b){return (a*b)%F;}
long long add(long long a,long long b){return (a+b)%F;}
long long sub(long long a,long long b){return (a-b+(a-b)/F*F+F)%F;}
typedef long long ll;
ll n,d,x;
int i,a[MAXN],b[MAXN];
//x is 64-bit variable;
ll getNextX() {
x = (x * 37 + 10007) % 1000000007;
return x;
}
void initAB() {
for(i = 0; i < n; i = i + 1){
a[i] = i + 1;
}
for(i = 0; i < n; i = i + 1){
swap(a[i], a[getNextX() % (i + 1)]);
}
for(i = 0; i < n; i = i + 1){
if (i < d)
b[i] = 1;
else
b[i] = 0;
}
for(i = 0; i < n; i = i + 1){
swap(b[i], b[getNextX() % (i + 1)]);
}
} int q[MAXN]={0},h[MAXN]={0};
int main()
{
// freopen("FFT.in","r",stdin);
// freopen("FFT.out","w",stdout); cin>>n>>d>>x;
initAB(); Rep(i,n) if (b[i]) q[++q[0]]=i;
Rep(i,n) h[a[i]]=i; // Rep(i,n) cout<<a[i]<<' ';cout<<endl;
// Rep(i,n) cout<<b[i]<<' ';cout<<endl; Rep(i,n)
{
int s=30,ans=0;
Rep(j,30)
{
if (n-j<=0) break;
int t=h[n-j];
if (t<=i&&b[i-t]) {ans=n-j; break;}
}
if (!ans)
{
For(j,q[0])
{
int t=q[j];
if (t>i) break;
ans=max(ans,a[i-t]*b[t]);
}
} printf("%d\n",ans); } return 0;
}

版权声明:本文博主原创文章。博客,未经同意不得转载。

CF 444B(DZY Loves FFT-时间复杂度)的更多相关文章

  1. Codeforces #254 div1 B. DZY Loves FFT 暴力乱搞

    B. DZY Loves FFT 题目连接: http://codeforces.com/contest/444/problem/B Description DZY loves Fast Fourie ...

  2. CF 444C DZY Loves Physics(图论结论题)

    题目链接: 传送门 DZY Loves Chemistry time limit per test1 second     memory limit per test256 megabytes Des ...

  3. CF 445B DZY Loves Chemistry(并查集)

    题目链接: 传送门 DZY Loves Chemistry time limit per test:1 second     memory limit per test:256 megabytes D ...

  4. CF 444A(DZY Loves Physics-低密度脂蛋白诱导子图)

    A. DZY Loves Physics time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. Cf 444C DZY Loves Colors(段树)

    DZY loves colors, and he enjoys painting. On a colorful day, DZY gets a colorful ribbon, which consi ...

  6. CF A. DZY Loves Hash

    A. DZY Loves Hash time limit per test 1 second memory limit per test 256 megabytes input standard in ...

  7. CF 445A(DZY Loves Chessboard-BW填充)

    A. DZY Loves Chessboard time limit per test 1 second memory limit per test 256 megabytes input stand ...

  8. (CF)Codeforces445A DZY Loves Chessboard(纯实现题)

    转载请注明出处:http://blog.csdn.net/u012860063? viewmode=contents 题目链接:http://codeforces.com/problemset/pro ...

  9. CF 445B(DZY Loves Chemistry-求连通块)

    B. DZY Loves Chemistry time limit per test 1 second memory limit per test 256 megabytes input standa ...

随机推荐

  1. 158个JAVA免豆精品资料汇总

    附件完整版下载地址: http://down.51cto.com/data/431561 附件部分预览~ java中国移动收费系统[源代码] http://down.51cto.com/data/70 ...

  2. VMware vSphere 服务器虚拟化之二十六 桌面虚拟化之View Persona Management

    VMware vSphere 服务器虚拟化之二十六 桌面虚拟化之View Persona Management 实验失败告终,启动VMware View Persona Management服务报10 ...

  3. Wake-On-LAN待机或休眠模式中唤醒

    Wake-On-LAN简称WOL,是一种电源管理功能:如果存在网络活动,则允许设备将操作系统从待机或休眠模式中唤醒.许多主板厂商支持IBM提出的网络唤醒标准.该标准允许网络管理员远程打开PC机电源,以 ...

  4. 浅谈android的am命令

    android系统为大家提供了adb工具,在adb的基础上执行adb shell就可以从PC上对手机侧执行shell命令.和pc的linux系统一样,在系统的默认路径syste/bin下面是可执行程序 ...

  5. BI事实上的和维表定义

    一个典型的例子是,逻辑业务相比立方体,产品尺寸.时间维度.位置尺寸,分别作为不同的轴.轴的交点是一个详细的事实.这一事实表是多维度的交叉点的一个表.维表是事实的分析的一种形式. 首先介绍下数据库结构中 ...

  6. [Unity3D]转让Android介面

    简单介绍 有一些手机功能.Unity没有提供对应的接口.比如震动,比如不锁屏,比如GPS.比如... 有太多的特殊功能Unity都没有提供接口.这时候,我们就须要通过使用Android原生的ADT编辑 ...

  7. poj 2586 Y2K Accounting Bug (贪心)

    Y2K Accounting Bug Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 8678   Accepted: 428 ...

  8. 1、Cocos2dx 3.0游戏开发三找一小块前言

    尊重开发人员的劳动成果,转载的时候请务必注明出处:http://blog.csdn.net/haomengzhu/article/details/27094663 前言 Cocos2d-x 是一个通用 ...

  9. 使用require.js和backbone实现简单单页应用实践

    前言 最近的任务是重做公司的触屏版,于是再园子里各种逛,想找个合适的框架做成Web App.看到了叶大(http://www.cnblogs.com/yexiaochai/)对backbone的描述和 ...

  10. C# Windows Phone App 开发,自制LockScreen 锁定画面类别(Class),从【网路图片】、【Assets资源】、【UI】修改锁定画面。

    原文:C# Windows Phone App 开发,自制LockScreen 锁定画面类别(Class),从[网路图片].[Assets资源].[UI]修改锁定画面. 一般我们在开发Windows ...