P1852 [国家集训队]跳跳棋

题目描述

跳跳棋是在一条数轴上进行的。棋子只能摆在整点上。每个点不能摆超过一个棋子。

我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\),\(c\)这三个位置。我们要通过最少的跳动把他们的位置移动成\(x\),\(y\),\(z\)。(棋子是没有区别的)

跳动的规则很简单,任意选一颗棋子,对一颗中轴棋子跳动。跳动后两颗棋子距离不变。一次只允许跳过1颗棋子。

写一个程序,首先判断是否可以完成任务。如果可以,输出最少需要的跳动次数。

输入输出格式

输入格式:

第一行包含三个整数,表示当前棋子的位置\(a\) \(b\) \(c\)。(互不相同)

第二行包含三个整数,表示目标位置\(x\) \(y\) \(z\)。(互不相同)

输出格式:

如果无解,输出一行\(NO\)。

如果可以到达,第一行输出\(YES\),第二行输出最少步数。

说明

20% 输入整数的绝对值均不超过10

40% 输入整数的绝对值均不超过10000

100% 绝对值不超过10^9


精巧的建模题。

划重点了划重点了一次只允许跳过1颗棋子,这句话是解题的关键。

手玩一下跳法,现有描述位置的递增三元组\((x,y,z)\),研究它能够在一步之内跳到何处。

首先,中间的元素可以随意往两边跳到达状态\((2x-y,x,z)\)和状态\((x,z,2z-y)\),注意到这两个三元组的边界是扩大了的。

对于两边的元素,设\(d1=y-x,d2=z-y\)

若\(d1>d2\),则\(c\)可以往内跳,到达状态\((x,b-d2,b)\)

若\(d2>d1\),同理。

注意到这次到达的状态三元组的边界是缩小了的,且跳法具有唯一性

若\(d1=d2\),则边界没法缩小了,假定为边界条件。

对缩小边界的跳法具有唯一性这一性质,我们可以联想到什么呢?

将初始状态和目标状态同时缩小边界,看能否产生交集。

用树来描述这一个状态集合(树父亲的唯一性对应缩小边界的唯一性)。

到这里40分就拿到了。


但是我们发现,树的状态太多,无法存储。

只能每次在线询问需要的状态,复杂度为\(O(d)\),\(d\)的两个节点的相对深度。

感觉这样就像裸奔,所以,能不能降低询问状态的复杂度呢?

再选一个三元组\((x,y,z)\)玩,现在我们只需要它缩小边界的状态了,只玩这个。

对于两边的元素,设\(d1=y-x,d2=z-y\)

只讨论\(d1>d2\)的情况,如下图

这样看,取一下模,就可以直接到达右边的状态了

当然注意一下细节,比如刚好整除的状态。

参考GCD的复杂度,单次查询差不多最坏为\(O(logD)\),\(D\)为原始给出坐标最大距离

有这个加速,我们基本就只用考虑要怎么询问状态了。


我们尽可能想办法只询问需要的状态。

判断是否能够到达很简单,只需要检验一下两个初始三元组的树根是否一样就行了。

如果在同一颗树了,问题就有点像LCA了。

事实上一开始的一种想法应该是直接加速的模拟往上跳,但实现起来有点困难,跳过了也不太好弄。

有一种倍增求LCA的方式是先把两个点跳到同一深度,然后两个点一起向上跳。

可以仿造这种做法先将两个状态置于一个深度,然后二分它们的LCA离它们的距离,每次加速的往上跳。

于是总复杂度:\(O(log^2D)\)


Code:

#include <cstdio>
#include <algorithm>
int min(int x,int y){return x<y?x:y;}
int r[3],ori[3],goa[3];
int get(int a,int b,int c)
{
int d1=b-a,d2=c-b,cnt=0;
if(d1>d2)
{
cnt=d1/d2;
int d=d1%d2;
if(!d)
{
d+=d2;
cnt--;
}
cnt+=get(a,a+d,a+d+d2);
}
else if(d1<d2)
{
cnt=d2/d1;
int d=d2%d1;
if(!d)
{
d+=d1;
cnt--;
}
cnt+=get(c-d-d1,c-d,c);
}
else
r[0]=a,r[1]=b,r[2]=c;
return cnt;
}
void up(int a,int b,int c,int step)
{
if(!step)
{
r[0]=a,r[1]=b,r[2]=c;
return;
}
int d1=b-a,d2=c-b,cnt=0;
if(d1>d2)
{
cnt=d1/d2;
int d=d1%d2;
if(!d)
{
d+=d2;
cnt--;
}
if(step>=cnt)
up(a,a+d,a+d+d2,step-cnt);
else
{
int k=cnt-step;
up(a,a+d+k*d2,a+d+(k+1)*d2,0);
}
}
else if(d1<d2)
{
cnt=d2/d1;
int d=d2%d1;
if(!d)
{
d+=d1;
cnt--;
}
if(step>=cnt)
up(c-d-d1,c-d,c,step-cnt);
else
{
int k=cnt-step;
up(c-d-(k+1)*d1,c-d-k*d1,c,0);
}
}
else
r[0]=a,r[1]=b,r[2]=c;
}
bool check(int step)
{
int to[3];
up(goa[0],goa[1],goa[2],step);
to[0]=r[0];to[1]=r[1];to[2]=r[2];
up(ori[0],ori[1],ori[2],step);
if(to[0]!=r[0]||to[1]!=r[1]||to[2]!=r[2])
return false;
return true;
}
int main()
{
int to[3],ans=0;
scanf("%d%d%d%d%d%d",ori,ori+1,ori+2,goa,goa+1,goa+2);
std::sort(ori,ori+3);std::sort(goa,goa+3);
int step1=get(ori[0],ori[1],ori[2]);
to[0]=r[0];to[1]=r[1];to[2]=r[2];
int step2=get(goa[0],goa[1],goa[2]);
if(to[0]!=r[0]||to[1]!=r[1]||to[2]!=r[2])
{
printf("NO\n");
return 0;
}
if(step1<step2)
{
ans+=step2-step1;
up(goa[0],goa[1],goa[2],step2-step1);
goa[0]=r[0];goa[1]=r[1];goa[2]=r[2];
}
else if(step1>step2)
{
ans+=step1-step2;
up(ori[0],ori[1],ori[2],step1-step2);
ori[0]=r[0];ori[1]=r[1];ori[2]=r[2];
}
int l=0,rr=min(step1,step2);
while(l<rr)
{
int mid=l+rr>>1;
if(check(mid))
rr=mid;
else
l=mid+1;
}
printf("YES\n%d\n",(l<<1)+ans);
return 0;
}

2018.6.27

洛谷 P1852 [国家集训队]跳跳棋 解题报告的更多相关文章

  1. 洛谷 P1852 [国家集训队] 跳跳棋

    题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在a,b,c这三个位置.我们要通过最少的跳动把他们的位置移动 ...

  2. 洛谷 P1407 [国家集训队]稳定婚姻 解题报告

    P1407 [国家集训队]稳定婚姻 题目描述 我国的离婚率连续7年上升,今年的头两季,平均每天有近5000对夫妇离婚,大城市的离婚率上升最快,有研究婚姻问题的专家认为,是与简化离婚手续有关. 25岁的 ...

  3. 洛谷 P1501 [国家集训队]Tree II 解题报告

    P1501 [国家集训队]Tree II 题目描述 一棵\(n\)个点的树,每个点的初始权值为\(1\).对于这棵树有\(q\)个操作,每个操作为以下四种操作之一: + u v c:将\(u\)到\( ...

  4. 洛谷 P2757 [国家集训队]等差子序列 解题报告

    P2757 [国家集训队]等差子序列 题目描述 给一个\(1\)到\(N\)的排列\(\{A_i\}\),询问是否存在 \[1 \le p_1<p_2<p_3<p_4<p_5& ...

  5. 洛谷 P1527 [国家集训队]矩阵乘法 解题报告

    P1527 [国家集训队]矩阵乘法 题目描述 给你一个\(N*N\)的矩阵,不用算矩阵乘法,但是每次询问一个子矩形的第\(K\)小数. 输入输出格式 输入格式: 第一行两个数\(N,Q\),表示矩阵大 ...

  6. 洛谷 P1903 [国家集训队]数颜色 解题报告

    P1903 [国家集训队]数颜色 题目描述 墨墨购买了一套\(N\)支彩色画笔(其中有些颜色可能相同),摆成一排,你需要回答墨墨的提问.墨墨会向你发布如下指令: 1.Q L R代表询问你从第\(L\) ...

  7. P1852 [国家集训队]跳跳棋

    P1852 [国家集训队]跳跳棋 lca+二分 详细解析见题解 对于每组跳棋,我们可以用一个三元组(x,y,z)表示 我们发现,这个三元组的转移具有唯一性,收束性 也就是说,把每个三元组当成点,以转移 ...

  8. luogu P1852 [国家集训队]跳跳棋

    luogu 直接操作是不可能的,考虑发现一些性质.可以发现如果每次跳的棋子都是两边的,那么最多只有一种方案,那么就把这样操作得到的状态记为当前状态的父亲,从一个状态这样做一定会结束.那么如果两个状态只 ...

  9. 【洛谷】1852:[国家集训队]跳跳棋【LCA】【倍增?】

    P1852 [国家集训队]跳跳棋 题目背景 原<奇怪的字符串>请前往 P2543 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个 ...

随机推荐

  1. 大数据入门第二十二天——spark(二)RDD算子(1)

    一.RDD概述 1.什么是RDD RDD(Resilient Distributed Dataset)叫做分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行计算的 ...

  2. 20155305《网络对抗》Web安全基础实践

    20155305<网络对抗>Web安全基础实践 基础问题回答 SQL注入攻击原理,如何防御? 原理:SQL注入攻击指的是通过构建特殊的输入作为参数传入Web应用程序,而这些输入大都是SQL ...

  3. mfc CProgressCtrl

    CProgressCtrl常用属性 CProgressCtrl类常用成员函数 CProgressCtrl代码示例 一.CProgressCtrl控件属性 当我们在处理大程序时,常常需要耗很长时间(比如 ...

  4. 【HNOI2016】序列

    题面 题解 设\([l, r]\)的最小值的位置为\(p\),那么对于左端点在区间\([l, p]\),右端点在区间\([p, r]\)的区间最小值都为\(a[p]\). 这一部分的贡献就是\(a[p ...

  5. linux 定时器原理

    内核定时器:    unsigned long timeout = jiffies + (x * HZ);    while(1) {        // Check the condition.   ...

  6. JAVAWEB 项目注册登录模块问题总结

    tomcat: 假如tomcat服务器启动出现错误,那就可能是servlet或代码的原因 tomcat服务器出现不能访问页面的情况,可以在eclipse tomcat服务器设置里设置为共享服务器模式 ...

  7. 如何使用淘宝 NPM 镜像,安装CNPM的方法

    npm 版本需要大于 3.0 前提:安装好npm 环境:Linux 直接在linux下输入命令: npm install -g cnpm --registry=https://registry.npm ...

  8. Siki_Unity_2-9_C#高级教程(未完)

    Unity 2-9 C#高级教程 任务1:字符串和正则表达式任务1-1&1-2:字符串类string System.String类(string为别名) 注:string创建的字符串是不可变的 ...

  9. 新手向:从不同的角度来详细分析Redis

    最近对华为云分布式缓存产品Redis做了一些研究,于是整理了一些基本的知识拿出来与大家分享,首先跟大家分享的是,如何从不同的角度来详细使用Redis. 小编将从以下9个角度来进行详细分析,希望可以帮到 ...

  10. VRP基础及操作

    VRP基础及操作 前言 通用路由平台VRP(Versatile Routing Platform)是华为公司数据通信产品的通用操作系统平台,它以IP业务为核心,采用组件化的体系结构,在实现丰富功能特性 ...