题目链接

错位排列\(D_n=(n-1)*(D_{n-1}+D_{n-2})\),表示\(n\)个数都不在其下标位置上的排列数。

那么题目要求的就是\(C_n^m*D_{n-m}\)。

阶乘分母部分的逆元可以线性处理,不需要扩欧。

//13516kb	6784ms
#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define MAXIN 1000000
#define p (1000000007)
typedef long long LL;
const int N=1e6+5; int inv_fac[N],fac[N],D[N];
char IN[MAXIN],*SS=IN,*TT=IN; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init()
{
D[1]=0, inv_fac[0]=inv_fac[1]=fac[0]=fac[1]=D[0]=D[2]=1;
for(int i=2; i<N; ++i){
inv_fac[i]=1ll*(p-p/i)*inv_fac[p%i]%p,
fac[i]=1ll*fac[i-1]*i%p;
}
for(int i=3; i<N; ++i) inv_fac[i]=1ll*inv_fac[i]*inv_fac[i-1]%p;
for(int i=3; i<N; ++i) D[i]=1ll*(i-1)*(D[i-1]+D[i-2])%p;
} int main()
{
Init();
int T=read(),n,m;
while(T--)
n=read(),m=read(),printf("%lld\n",(1ll*fac[n]*inv_fac[m]%p*inv_fac[n-m]%p*D[n-m]%p)); return 0;
}

考试时:这\(O(n^2)\)的\(70\)分不是送吗。。然后\(10^4\)的范围询问那么多,离线排个序 \(O(10^8)\) 3s很稳吧。。

然后写,发现不过样例。。发现主要是\(f[i][0]\)不对。比着dfs看,把规律找出来了:\(f[i][0]=(i-1)*f[i-1][0]+f[i-1][1]\)。(之前想漏个地方)

然后数据范围错了woc!是\(10^6\)。

然后就\(70\)分了。

#include <cstdio>
#include <cctype>
#include <algorithm>
//#define gc() getchar()
#define gc() (SS==TT&&(TT=(SS=IN)+fread(IN,1,MAXIN,stdin),SS==TT)?EOF:*SS++)
#define MAXIN 1000000
#define mod (1000000007)
typedef long long LL;
const int N=1505; int T,f[N+3][N+3],g[2][10005],Ans[500005];
char IN[MAXIN],*SS=IN,*TT=IN;
struct Ques{
int x,y,id;
bool operator <(const Ques &a)const{
return x==a.x?y<a.y:x<a.x;
}
}q[500005]; inline int read()
{
int now=0;register char c=gc();
for(;!isdigit(c);c=gc());
for(;isdigit(c);now=now*10+c-'0',c=gc());
return now;
}
void Init()
{
LL tmp;
f[1][1]=f[2][0]=f[2][2]=1, f[1][0]=f[2][1]=0;
for(int i=3; i<N; ++i)
{
tmp=1ll*f[i-1][0]*(i-1)+(LL)f[i-1][1];
f[i][0]=(tmp%mod), f[i][i]=1;
for(int j=1; j<i; ++j)
{
tmp=1ll*f[i-1][j]*(i-j-1)+1ll*f[i-1][j+1]*(j+1)+(LL)f[i-1][j-1];
f[i][j]=(tmp%mod);
}
}
}
void Violence()
{
Init();
for(int i=1; i<=T; ++i) printf("%d\n",f[q[i].x][q[i].y]);
}
void Get_Ans(int n)
{
int pos=1;
while(q[pos].x==1) Ans[q[pos].id]=q[pos].y, ++pos;
while(q[pos].x==2) Ans[q[pos].id]=std::abs(1-q[pos].y), ++pos;
int now=1,las=0; LL tmp;
g[0][0]=g[0][2]=1, g[0][1]=0;
for(int i=3; i<=n; ++i)
{
tmp=1ll*g[las][0]*(i-1)+(LL)g[las][1];
g[now][0]=(tmp%mod), g[now][i]=1;
while(!(q[pos].y) && q[pos].x==i) Ans[q[pos].id]=g[now][0], ++pos; for(int j=1; j<i; ++j)
{
tmp=1ll*g[las][j]*(i-j-1)+1ll*g[las][j+1]*(j+1)+(LL)g[las][j-1];
g[now][j]=(tmp%mod);
while(q[pos].y==j && q[pos].x==i) Ans[q[pos].id]=g[now][j], ++pos;
}
while(q[pos].y==i && q[pos].x==i) Ans[q[pos].id]=g[now][i], ++pos; las=now, now^=1;
}
for(int i=1; i<=T; ++i) printf("%d\n",Ans[i]);
} int main()
{
freopen("permutation.in","r",stdin);
freopen("permutation.out","w",stdout); T=read();
int mx=0;
for(int i=1; i<=T; ++i) mx=std::max(mx,q[i].x=read()),q[i].y=read(),q[i].id=i; if(mx<=1500) {Violence(); return 0;} std::sort(q+1,q+1+T);
Get_Ans(mx); fclose(stdin);fclose(stdout);
return 0;
}

BZOJ.4517.[SDOI2016]排列计数(错位排列 逆元)的更多相关文章

  1. [BZOJ4517][SDOI2016]排列计数(错位排列)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1616  Solved: 985[Submit][Statu ...

  2. BZOJ 4517: [Sdoi2016]排列计数 错排+逆元

    4517: [Sdoi2016]排列计数 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i, ...

  3. BZOJ 4517: [Sdoi2016]排列计数 [容斥原理]

    4517: [Sdoi2016]排列计数 题意:多组询问,n的全排列中恰好m个不是错排的有多少个 容斥原理强行推♂倒她 $恰好m个不是错排 $ \[ =\ \ge m个不是错排 - \ge m+1个不 ...

  4. BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 911  Solved: 566[Submit][Status ...

  5. 数学(错排):BZOJ 4517: [Sdoi2016]排列计数

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 693  Solved: 434[Submit][Status ...

  6. BZOJ 4517: [Sdoi2016]排列计数 错排公式

    4517: [Sdoi2016]排列计数 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=4517 Description 求有多少种长度为 ...

  7. Bzoj 4517: [Sdoi2016]排列计数(排列组合)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec Memory Limit: 128 MB Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ...

  8. BZOJ 4517: [Sdoi2016]排列计数(组合数学)

    题面 Description 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列恰好有 m ...

  9. BZOJ 4517--[Sdoi2016]排列计数(乘法逆元)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1727  Solved: 1067 Description ...

随机推荐

  1. windows下非管理员权限安装mysql

    windows下,mysql有两种安装方式: 1.msi安装 2.zip安装 无论是哪种安装方式,都因为需要将mysql安装为一个服务,所以必须要以管理员权限安装. 因为公司的换了虚拟机,无法取得管理 ...

  2. python---django中orm的使用(3)admin配置与使用

    新建项目,并开启 python manage.py runserver 访问admin页面 http://127.0.0.1:8080/admin 补充:若是发现admin页面样式丢失:可能是因为在s ...

  3. C#string与stringBuilder的区别

    string的缺点是每次字符串变量的内容发生了改变时,都必须重新分配内存.你想想,如果创建一个迭代100000次的循环,每次迭代都将一个字符连接到字符串,这样内存中就会有100000个字符串,每个字符 ...

  4. 那些年的 网络通信之 TCP/IP 传输控制协议 ip 加 端口 ---

    /* 一个文本小写转换为大写的小程序,当客户端从键盘录入一串字符串发送到服务端服务端转换为大写返回给客户端 */ import java.io.*; import java.net.*; class ...

  5. Kafka 温故(五):Kafka的消费编程模型

    Kafka的消费模型分为两种: 1.分区消费模型 2.分组消费模型 一.分区消费模型 二.分组消费模型 Producer : package cn.outofmemory.kafka; import ...

  6. Ubuntu 16.04开机自启Nginx简单脚本

    本文要记述的是最简单的Ubuntu下开机自启 nginx的脚本 这里将nginx装在了/usr/local/nginx目录下,nginx本身没有注册成服务,所以直接使用服务开机自启是不行的,除非自己写 ...

  7. 第7月第17天 rxswift swift3.0

    1.rxswift just(...) .subscribe(onNext: { }) https://realm.io/cn/news/slug-max-alexander-functional-r ...

  8. 产品排序(2015 年北大自招夏令营) (与栈相关的区间DP)

    题面: \(solution:\) 又是一道\(DP\)的好题啊!状态并不明显,需要仔细分析,而且还结合了栈的特性! 做这一类题,只要出题人有点理想,一定会在栈的性质上做点文章,所以我们尽量围绕栈的性 ...

  9. 爬虫笔记之w3cschool注册页面滑块验证码破解(巨简单滑块位置识别,非鼠标模拟轨迹)

    一.背景介绍 最开始接触验证码破解的时候就是破解的w3cschool的使用手机号找回密码页面的验证码,详见:验证码识别之w3cschool字符图片验证码(easy级别),这次破解一下他们注册页面的滑块 ...

  10. MYSQL问题解决

    1. MySQL错误日志里出现: 140331 10:08:18 [ERROR] Error reading master configuration 140331 10:08:18 [ERROR] ...