「BZOJ 3645」小朋友与二叉树

解题思路

令 \(G(x)\) 为关于可选大小集合的生成函数,即

\[G(x)=\sum[i\in c ] x^i
\]

令 \(F(x)\) 第 \(n\) 项的系数为为权值为 \(n\) 的二叉树的方案数,显然有

\[F(x)=F(x)^2G(x)+1\\
F^2(x)G(x)-F(x)+1=0 \\
F(x)=\dfrac{1\pm\sqrt{1-4G(x)}}{2G(x)}
\]

当 \(x\to 0\) 时,\(F(x)\) 的值为 \(1\) ,当取加号的时候发现

\[\lim_{x\to0} F(x)=\dfrac{1}{G(x)} \\ =\infty
\]

所以

\[F(x)=\dfrac{1-\sqrt{1-4G(x)}}{2G(x)}
\]

由于 \(2G(x)\) 的常数项为 \(0\) 不存在逆元,所以要稍作一些变化

\[F(x)=\dfrac{4G(x)}{2G(x)(1+\sqrt{1-4G(x)})} \\
=\dfrac{2}{1+\sqrt{1-4G(x)}}
\]

\(\sqrt{1-4G(x)}\) 的常数项为 \(1\) ,一遍开根一遍求逆就好了,复杂度 \(\mathcal O(n\log n)\) ,下面代码拖了多项式板子所以有用不到的部分。

code

/*program by mangoyang*/
#include<bits/stdc++.h>
#define inf (0x7f7f7f7f)
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
typedef long long ll;
using namespace std;
template <class T>
inline void read(T &x){
int ch = 0, f = 0; x = 0;
for(; !isdigit(ch); ch = getchar()) if(ch == '-') f = 1;
for(; isdigit(ch); ch = getchar()) x = x * 10 + ch - 48;
if(f) x = -x;
}
const int N = (1 << 22) + 5, P = 998244353, G = 3;
namespace poly{
int rev[N], W[N], invW[N], len, lg;
inline int Pow(int a, int b){
int ans = 1;
for(; b; b >>= 1, a = 1ll * a * a % P)
if(b & 1) ans = 1ll * ans * a % P;
return ans;
}
inline void init(){
for(int k = 2; k < N; k <<= 1)
W[k] = Pow(G, (P - 1) / k), invW[k] = Pow(W[k], P - 2);
}
inline void timesinit(int lenth){
for(len = 1, lg = 0; len <= lenth; len <<= 1, lg++);
for(int i = 0; i < len; i++)
rev[i] = (rev[i>>1] >> 1) | ((i & 1) << (lg - 1));
}
inline void DFT(int *a, int sgn){
for(int i = 0; i < len; i++) if(i < rev[i]) swap(a[i], a[rev[i]]);
for(int k = 2; k <= len; k <<= 1){
int w = ~sgn ? W[k] : invW[k];
for(int i = 0; i < len; i += k){
int now = 1;
for(int j = i; j < i + (k >> 1); j++){
int x = a[j], y = 1ll * a[j+(k>>1)] * now % P;
a[j] = (x + y) % P, a[j+(k>>1)] = (x - y + P) % P;
now = 1ll * now * w % P;
}
}
}
if(sgn == -1){
int Inv = Pow(len, P - 2);
for(int i = 0; i < len; i++) a[i] = 1ll * a[i] * Inv % P;
}
}
inline void getinv(int *a, int *b, int n){
static int tmp[N];
if(n == 1) return (void) (b[0] = Pow(a[0], P - 2));
getinv(a, b, (n + 1) / 2);
timesinit(n * 2 - 1);
for(int i = 0; i < len; i++) tmp[i] = i < n ? a[i] : 0;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++)
b[i] = 1ll * (2 - 1ll * tmp[i] * b[i] % P + P) % P * b[i] % P;
DFT(b, -1);
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void getsqrt(int *a, int *b, int n){
static int tmp1[N], tmp2[N];
if(n == 1) return (void) (b[0] = 1);
getsqrt(a, b, (n + 1) / 2);
for(int i = 0; i < n; i++) tmp1[i] = a[i];
getinv(b, tmp2, n), timesinit(n * 2 - 1);
DFT(tmp1, 1), DFT(tmp2, 1);
for(int i = 0; i < len; i++) tmp1[i] = 1ll * tmp1[i] * tmp2[i] % P;
DFT(tmp1, -1);
for(int i = 0; i < len; i++)
b[i] = 1ll * (b[i] + tmp1[i]) % P * Pow(2, P - 2) % P;
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp1[i] = tmp2[i] = 0;
}
inline void getln(int *a, int *b, int n){
static int tmp[N];
getinv(a, b, n), timesinit(n * 2 - 1);
for(int i = 1; i < n; i++) tmp[i-1] = 1ll * a[i] * i % P;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++) b[i] = 1ll * tmp[i] * b[i] % P;
DFT(b, -1);
for(int i = len - 1; i; i--) b[i] = 1ll * b[i-1] * Pow(i, P - 2) % P;
b[0] = 0;
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void getexp(int *a, int *b, int n){
static int tmp[N];
if(n == 1) return (void) (b[0] = 1);
getexp(a, b, (n + 1) / 2);
getln(b, tmp, n), timesinit(n * 2 - 1);
for(int i = 0; i < n; i++) tmp[i] = (!i - tmp[i] + a[i] + P) % P;
DFT(tmp, 1), DFT(b, 1);
for(int i = 0; i < len; i++) b[i] = 1ll * b[i] * tmp[i] % P;
DFT(b, -1);
for(int i = n; i < len; i++) b[i] = 0;
for(int i = 0; i < len; i++) tmp[i] = 0;
}
inline void power(int *a, int *b, int n, int m, ll k){
static int tmp[N];
for(int i = 0; i < m; i++) b[i] = 0;
int fir = -1;
for(int i = 0; i < n; i++) if(a[i]){ fir = i; break; }
if(fir && k >= m) return;
if(fir == -1 || 1ll * fir * k >= m) return;
for(int i = fir; i < n; i++) b[i-fir] = a[i];
for(int i = 0; i < n - fir; i++)
b[i] = 1ll * b[i] * Pow(a[fir], P - 2) % P;
getln(b, tmp, m);
for(int i = 0; i < m; i++)
b[i] = 1ll * tmp[i] * (k % P) % P, tmp[i] = 0;
getexp(b, tmp, m);
for(int i = m; i >= fir * k; i--)
b[i] = 1ll * tmp[i-fir*k] * Pow(a[fir], k % (P - 1)) % P;
for(int i = 0; i < fir * k; i++) b[i] = 0;
for(int i = 0; i < m; i++) tmp[i] = 0;
}
}
using poly::Pow;
using poly::DFT;
using poly::timesinit;
int a[N], b[N], c[N], n, m;
int main(){
poly::init(), read(n), read(m), m++;
for(int i = 1, x; i <= n; i++)
read(x), a[x] = P - 4;
a[0]++, poly::getsqrt(a, b, m);
b[0] = (b[0] + 1) % P;
poly::getinv(b, c, m);
for(int i = 1; i < m; i++) printf("%lld\n", 2ll * c[i] % P);
return 0;
}

「BZOJ 3645」小朋友与二叉树的更多相关文章

  1. 「BZOJ 4228」Tibbar的后花园

    「BZOJ 4228」Tibbar的后花园 Please contact lydsy2012@163.com! 警告 解题思路 可以证明最终的图中所有点的度数都 \(< 3\) ,且不存在环长是 ...

  2. 「BZOJ 4502」串

    「BZOJ 4502」串 题目描述 兔子们在玩字符串的游戏.首先,它们拿出了一个字符串集合 \(S\),然后它们定义一个字符串为"好"的,当且仅当它可以被分成非空的两段,其中每一段 ...

  3. 「BZOJ 4289」 PA2012 Tax

    「BZOJ 4289」 PA2012 Tax 题目描述 给出一个 \(N\) 个点 \(M\) 条边的无向图,经过一个点的代价是进入和离开这个点的两条边的边权的较大值,求从起点 \(1\) 到点 \( ...

  4. 「BZOJ 2534」 L - gap字符串

    「BZOJ 2534」 L - gap字符串 题目描述 有一种形如 \(uv u\) 形式的字符串,其中 \(u\) 是非空字符串,且 \(v\) 的长度正好为 \(L\), 那么称这个字符串为 \( ...

  5. 「BZOJ 2956」模积和

    「BZOJ 2956」模积和 令 \(l=\min(n,m)\).这个 \(i\neq j\) 非常不优雅,所以我们考虑分开计算,即: \[\begin{aligned} &\sum_{i=1 ...

  6. Solution -「BZOJ 3812」主旋律

    \(\mathcal{Description}\)   Link.   给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...

  7. 「BZOJ 1001」狼抓兔子

    题目链接 luogu bzoj \(Solution\) 这个貌似没有什么好讲的吧,直接按照这个给的图建图就好了啊,没有什么脑子,但是几点要注意的: 建双向边啊. 要这么写,中间还要写一个\(whil ...

  8. 「BZOJ 5188」「Usaco2018 Jan」MooTube

    题目链接 luogu bzoj \(Describe\) 有一个\(n\)个节点的树,边有权值,定义两个节点之间的距离为两点之间的路径上的最小边权 给你\(Q\)个询问,问你与点\(v\)的距离大于等 ...

  9. 「BZOJ 1791」「IOI 2008」Island「基环树」

    题意 求基环树森林所有基环树的直径之和 题解 考虑的一个基环树的直径,只会有两种情况,第一种是某个环上结点子树的直径,第二种是从两个环上结点子树内的最深路径,加上环上这两个结点之间的较长路径. 那就找 ...

随机推荐

  1. spring中set注入的一些小细节错误

    这是小白偶尔一直null指针的错误,调试了好久,原来是自己对spring注入的不够了解 我相信有很多跟我差不多的初学者会遇上,所以特地写出来,防止有人跟我一样.哈哈,也写上去,以防自己下次还犯这样的错 ...

  2. bzoj千题计划277:bzoj4513: [Sdoi2016]储能表

    http://www.lydsy.com/JudgeOnline/problem.php?id=4513 f[i][0/1][0/1][0/1] 从高到低第i位,是否卡n的上限,是否卡m的上限,是否卡 ...

  3. Matrix67|自由职业者,数学爱好者

    Matrix67|自由职业者,数学爱好者 介绍一下你自己和所做的工作. 我叫顾森,网名 Matrix67,长住北京的重庆人,目前没有固定的职业.一会儿当当码农,一会儿做做编辑,一会儿教教数学,一会儿写 ...

  4. [整理]Win下好用的Markdown工具

    用过haroopad,MarkPad,Sublime + markdown插件,前2款勉强能用,都处于继续开发中,haroopad支持的语法相对较少,提示也不明显,MarkPad还是有不少bug. 后 ...

  5. CF989C A Mist of Florescence (构造)

    CF989C A Mist of Florescence solution: 作为一道构造题,这题确实十分符合构造的一些通性----(我们需要找到一些规律,然后无脑循环).个人认为这题规律很巧妙也很典 ...

  6. C# 常用控件属性及方法介绍

      C#常用控件属性及方法介绍                                               目录 1.窗体(Form) 2.Label (标签)控件 3.TextBox ...

  7. 判断线段之间的关系(D - Intersecting Lines POJ - 1269 )

    题目链接:https://vjudge.net/contest/276358#problem/D 题目大意:每一次给你两条直线,然后问你这两条直线的关系(平行,共线,相交(输出交点)). 具体思路:先 ...

  8. tensorboard遇到的坑

    <ul><li>No graph definition files were found.</li></ul> <p>启动命令 tensor ...

  9. linux du查询目录所占的磁盘空间

    linux查询目录所占的磁盘空间 du -hxs /* --exclude=/proc |sort -rh 命令和选项的解释: du – 估计文件的空间使用情况 -hsx – (-h)更易读的格式,( ...

  10. oracle数据库如何创建用户和角色,并给其赋权?

    一.创建用户并赋予权限 1.创建用户 create user wangxiangyu identified by wangxiangyu; 2.赋权 grant dba to wangxiangyu; ...