参考:林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018.

首先在命令行中写入 activate tensorflow和jupyter notebook,运行如下代码。当然,事先准备好MNIST数据集。

 # coding: utf-8

 # In[4]:

 from keras.datasets import mnist
from keras.utils import np_utils
import numpy as np
np.random.seed(10) # In[5]: (x_train,y_train),(x_test,y_test)=mnist.load_data() # In[6]: x_train4d = x_train.reshape(x_train.shape[0],28,28,1).astype('float32')
x_test4d = x_test.reshape(x_test.shape[0],28,28,1).astype('float32') # In[7]: x_train4d_normalize = x_train4d/255
x_test4d_normalize = x_test4d/255 # In[8]: y_train_oneHot = np_utils.to_categorical(y_train)
y_test_oneHot = np_utils.to_categorical(y_test) # In[9]: from keras.models import Sequential
from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D # In[10]: model = Sequential() # In[11]: model.add(Conv2D(filters = 16,
kernel_size = (5,5),
padding = 'same',
input_shape = (28,28,1),
activation = ('relu')
)) # In[12]: model.add(MaxPooling2D(pool_size=(2,2))) # In[13]: model.add(Conv2D(filters = 36,
kernel_size = (5,5),
padding = 'same',
activation = 'relu')) # In[14]: model.add(MaxPooling2D(pool_size=(2,2))) # In[15]: model.add(Dropout(0,255)) # In[16]: model.add(Flatten()) # In[17]: model.add(Dense(128,activation = 'relu')) # In[18]: model.add(Dropout(0.5)) # In[19]: model.add(Dense(10,activation = 'sigmoid')) # In[20]: print(model.summary()) # In[21]: model.compile(loss='categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy']) # In[22]: train_history = model.fit(x = x_train4d_normalize,
y = y_train_oneHot,
validation_split = 0.2,
epochs = 10,
batch_size = 300,
verbose = 2) # In[23]: import matplotlib.pyplot as plt
def show_train_history(train_history,train,validation):
plt.plot(train_history.history[train])
plt.plot(train_history.history[validation])
plt.title('Train_History')
plt.ylabel(train)
plt.xlabel('Epoch')
plt.legend(['train','validation'], loc = 'upper left')
plt.show() # In[24]: show_train_history(train_history,'acc','val_acc') # In[25]: show_train_history(train_history,'loss','val_loss') # In[26]: scores = model.evaluate(x_test4d_normalize,y_test_oneHot)
scores[1] # In[27]: def plot_image_labels_prediction(images,labels,prediction,idx,num=10):
fig = plt.gcf()
fig.set_size_inches(12,24)
if num>50 : num = 50
for i in range(0,num):
ax = plt.subplot(10,5,1+i)
ax.imshow(images[idx],cmap='binary')
title = "lable="+str(labels[idx])
if len(prediction)>0:
title+=",predict="+str(prediction[idx])
ax.set_title(title,fontsize=10)
ax.set_xticks([]);ax.set_yticks([])
idx+=1
plt.show() # In[28]: prediction = model.predict_classes(x_test4d_normalize) # In[29]: plot_image_labels_prediction(x_test,
y_test,
prediction,
0,
50) # In[30]: import pandas as pd # In[31]: pd.crosstab(y_test,
prediction,
rownames=['label'],
colnames=['predict']) # In[ ]:

卷积神经网络简介:https://www.cnblogs.com/bai2018/p/10413889.html

产生如下神经网络:

其中加入的dropout层用于避免过度拟合。在每次迭代时,随机舍弃一部分的训练样本。

训练效果较好。

林大贵.TensorFlow+Keras深度学习人工智能实践应用[M].北京:清华大学出版社,2018.

keras框架的CNN手写数字识别MNIST的更多相关文章

  1. keras框架的MLP手写数字识别MNIST,梳理?

    keras框架的MLP手写数字识别MNIST 代码: # coding: utf-8 # In[1]: import numpy as np import pandas as pd from kera ...

  2. TensorFlow 之 手写数字识别MNIST

    官方文档: MNIST For ML Beginners - https://www.tensorflow.org/get_started/mnist/beginners Deep MNIST for ...

  3. Keras cnn 手写数字识别示例

    #基于mnist数据集的手写数字识别 #构造了cnn网络拟合识别函数,前两层为卷积层,第三层为池化层,第四层为Flatten层,最后两层为全连接层 #基于Keras 2.1.1 Tensorflow ...

  4. CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  5. 卷积神经网络CNN 手写数字识别

    1. 知识点准备 在了解 CNN 网络神经之前有两个概念要理解,第一是二维图像上卷积的概念,第二是 pooling 的概念. a. 卷积 关于卷积的概念和细节可以参考这里,卷积运算有两个非常重要特性, ...

  6. kaggle 实战 (2): CNN 手写数字识别

    文章目录 Tensorflow 官方示例 CNN 提交结果 Tensorflow 官方示例 import tensorflow as tf mnist = tf.keras.datasets.mnis ...

  7. pytorch CNN 手写数字识别

    一个被放弃的入门级的例子终于被我实现了,虽然还不太完美,但还是想记录下 1.预处理 相比较从库里下载数据集(关键是经常失败,格式也看不懂),更喜欢直接拿图片,从网上找了半天,最后从CSDN上下载了一个 ...

  8. keras基于卷积网络手写数字识别

    import time import keras from keras.utils import np_utils start = time.time() (x_train, y_train), (x ...

  9. Tensorflow手写数字识别---MNIST

    MNIST数据集:包含数字0-9的灰度图, 图片size为28x28.训练样本:55000,测试样本:10000,验证集:5000

随机推荐

  1. WAS 忘记密码

    一.重置密码 1.首先关闭was,ps –ef|grep java 查看java进程号,然后kill -9 XXXX杀掉进程即可.或者使用命令./stopServer.sh server1 2.取消控 ...

  2. Trigger,Cursor

    USE [Demo]GO /****** Object: StoredProcedure [dbo].[p_couser_Student] Script Date: 02/24/2014 20:43: ...

  3. 100-days: The one day

    Title:In tech race with China, US universities may lose a vital edge in tech race with  与...的科技比赛中 e ...

  4. linux下Redis主从复制

    Redis的主从配置比起MySQL主从配置简单多了,而且Redis主从复制中一个主服务可以有多个从服务,一个从服务又可以有多个从服务. MySQL主从配置http://www.cnblogs.com/ ...

  5. 37-Arrays.sort() 由大到小排序 和 对象数组排序

    1. 由大到小排序: 2. 对象数组排序: 1. 由大到小排序: 注意:必需是Integer 类型的数组!!! 方法一: import java.util.Arrays; import java.ut ...

  6. golang 通过fsnotify监控文件,并通过文件变化重启程序

    一.下载我们需要的包 > go get github.com/fsnotify/fsnotify 二.使用fsnotify监控文件 package main; import ( "gi ...

  7. 自定义 Mysql 类 与 自定义 异常类

    import MySQLdb class MyExcept(Exception): ''' 常见做法定义异常基类,然后在派生不同类型的异常 ''' def __init__(self, *args): ...

  8. 继承 (js原型链)

    原型链是实现继承的主要方法.基本思想:利用原型让一个引用类型继承另一个引用类型的属性和方法. 1.构造函数.原型.实例的关系: 每个构造函数都有原型属性(Prototype),指向一个原型对象(函数创 ...

  9. js对象(BOM部分/DOM部分)

    JS总体包括ECMAScript,DOM,BOM三个部分,但是能够和浏览器进行交互的只有DOM和BOM,那么到底什么是DOM和BOM呢 概念 BOM(Browser Object Model)是指浏览 ...

  10. [转载]linux awk命令详解

    简介 awk是一个强大的文本分析工具,相对于grep的查找,sed的编辑,awk在其对数据分析并生成报告时,显得尤为强大.简单来说awk就是把文件逐行的读入,以空格为默认分隔符将每行切片,切开的部分再 ...