NumPy 迭代数组
NumPy 迭代数组
NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式。
迭代器最基本的任务的可以完成对数组元素的访问。
接下来我们使用 arange() 函数创建一个 2X3 数组,并使用 nditer 对它进行迭代。
实例
输出结果为:
原始数组是:
[[0 1 2]
[3 4 5]] 迭代输出元素:
0, 1, 2, 3, 4, 5,
以上实例不是使用标准 C 或者 Fortran 顺序,选择的顺序是和数组内存布局一致的,这样做是为了提升访问的效率,默认是行序优先(row-major order,或者说是 C-order)。
这反映了默认情况下只需访问每个元素,而无需考虑其特定顺序。我们可以通过迭代上述数组的转置来看到这一点,并与以 C 顺序访问数组转置的 copy 方式做对比,如下实例:
实例
输出结果为:
0, 1, 2, 3, 4, 5, 0, 3, 1, 4, 2, 5,
从上述例子可以看出,a 和 a.T 的遍历顺序是一样的,也就是他们在内存中的存储顺序也是一样的,但是 a.T.copy(order = 'C') 的遍历结果是不同的,那是因为它和前两种的存储方式是不一样的,默认是按行访问。
控制遍历顺序
for x in np.nditer(a, order='F'):
Fortran order,即是列序优先;for x in np.nditer(a.T, order='C'):
C order,即是行序优先;
实例
输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] 原始数组的转置是:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]] 以 C 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55, 以 F 风格顺序排序:
[[ 0 20 40]
[ 5 25 45]
[10 30 50]
[15 35 55]]
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55,
可以通过显式设置,来强制 nditer 对象使用某种顺序:
实例
输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] 以 C 风格顺序排序:
0, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 以 F 风格顺序排序:
0, 20, 40, 5, 25, 45, 10, 30, 50, 15, 35, 55,
修改数组中元素的值
nditer 对象有另一个可选参数 op_flags。 默认情况下,nditer 将视待迭代遍历的数组为只读对象(read-only),为了在遍历数组的同时,实现对数组元素值得修改,必须指定 read-write 或者 write-only 的模式。
实例
输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] 修改后的数组是:
[[ 0 10 20 30]
[ 40 50 60 70]
[ 80 90 100 110]]
使用外部循环
nditer类的构造器拥有flags参数,它可以接受下列值:
参数 | 描述 |
---|---|
c_index |
可以跟踪 C 顺序的索引 |
f_index |
可以跟踪 Fortran 顺序的索引 |
multi-index |
每次迭代可以跟踪一种索引类型 |
external_loop |
给出的值是具有多个值的一维数组,而不是零维数组 |
在下面的实例中,迭代器遍历对应于每列,并组合为一维数组。
实例
输出结果为:
原始数组是:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] 修改后的数组是:
[ 0 20 40], [ 5 25 45], [10 30 50], [15 35 55],
广播迭代
如果两个数组是可广播的,nditer 组合对象能够同时迭代它们。 假设数组 a 的维度为 3X4,数组 b 的维度为 1X4 ,则使用以下迭代器(数组 b 被广播到 a 的大小)。
实例
输出结果为:
第一个数组为:
[[ 0 5 10 15]
[20 25 30 35]
[40 45 50 55]] 第二个数组为:
[1 2 3 4] 修改后的数组为:
0:1, 5:2, 10:3, 15:4, 20:1, 25:2, 30:3, 35:4, 40:1, 45:2, 50:3, 55:4,
NumPy 迭代数组的更多相关文章
- Lesson10——NumPy 迭代数组
NumPy 教程目录 NumPy 迭代数组 NumPy 迭代器对象 numpy.nditer 提供了一种灵活访问一个或者多个数组元素的方式. 迭代器最基本的任务的可以完成对数组元素的访问. Exa ...
- NumPy迭代数组
numpy.nditer是NumPy的一个迭代器对象,提供能够灵活的访问一个或者多个属猪元素的方式. # 迭代 z=np.arange(6).reshape(3,2) for x in np.ndit ...
- 吴裕雄--天生自然Numpy库学习笔记:NumPy 迭代数组
import numpy as np a = np.arange(6).reshape(2,3) print ('原始数组是:') print (a) print ('\n') print ('迭代输 ...
- 找出numpy array数组的最值及其索引
在list列表中,max(list)可以得到list的最大值,list.index(max(list))可以得到最大值对应的索引 但在numpy中的array没有index方法,取而代之的是where ...
- python 工具 字符串转numpy浮点数组
不同的数字之间使用 空格“ ”,“$”,"*"等隔开,支持带小数点的字符串NumArray=str2num(LineString,comment='#')将字符串中的所有非Doub ...
- Numpy | 04 数组属性
NumPy 数组的维数称为秩(rank),一维数组的秩为 1,二维数组的秩为 2,以此类推. 在 NumPy中,每一个线性的数组称为是一个轴(axis),也就是维度(dimensions).比如说,二 ...
- numpy使用数组进行数据处理
numpy使用数组进行数据处理 meshgrid函数 理解: 二维坐标系中,X轴可以取三个值1,2,3, Y轴可以取三个值7,8, 请问可以获得多少个点的坐标? 显而易见是6个: (1,7)(2,7) ...
- python数据分析 Numpy基础 数组和矢量计算
NumPy(Numerical Python的简称)是Python数值计算最重要的基础包.大多数提供科学计算的包都是用NumPy的数组作为构建基础. NumPy的部分功能如下: ndarray,一个具 ...
- Numpy中数组的乘法
Numpy中数组的乘法 按照两个相乘数组A和B的维度不同,分为以下乘法: 数字与一维/二维数组相乘: 一维数组与一维数组相乘: 二维数组与一维数组相乘: 二维数组与二维数组相乘: numpy有以下乘法 ...
随机推荐
- Python基础2 列表 字典 集合
本节内容 列表.元组操作 字符串操作 字典操作 集合操作 文件操作 字符编码与转码 1. 列表.元组操作 列表是我们最以后最常用的数据类型之一,通过列表可以对数据实现最方便的存储.修改等操作 定义列表 ...
- leetcode1021
class Solution(object): def removeOuterParentheses(self, S: str) -> str: li = list() bcode = 0 te ...
- QT中控制台程序运行问题
环境: ubuntu14.04 问题与解决方法: QT中的控制他程序,默认运行方式是直接输出到Output窗口中来.我的程序需要从控制台输入,这时候默认的运行方式就不行了.通过设置工程全选项让它在终端 ...
- PHP 使用非对称加密算法(RSA)
解释: 非对称加密算法需要两个密钥:公开密钥(publickey)和私有密钥(privatekey).公开密钥与私有密钥是一对,如果用公开密钥对数据进行加密,只有用对应的私有密钥才能解密:如果用私有密 ...
- day40-socket编程
一.socket介绍 看socket之前,先来回顾一下五层通讯流程: 但实际上从传输层开始以及以下,都是操作系统帮咱们完成的 Socket又称为套接字,它是应用层与TCP/IP协议族通信的中间软件抽象 ...
- EmEditor
姓 名:ttrar.com 序 列 号:DKAZQ-R9TYP-5SM2A-9Z8KD-3E2RK 免费版地址:https://zh-cn.emeditor.com/#download
- 创建模式--原型模式(JAVA)
原型模式: 原型模式主要针对模型对象类型的克隆,对已有构造好的对象进行复制获取一个新的对象实例.比如我们在获取一个对象并成功赋值后,要传递给多个处理类去处理. 打个比方:吃面是个处理类,面是个模型对象 ...
- iOS开发 2x 3x图
众所周知,iOS开发中的图片资源一般需要2倍图和3倍图,也就是2x,3x,但是最近思考了一个问题,为什么不能只提供3x的图片,2x的图片让系统从3x压缩就好了,于是上网搜索了下,得到了答案. 当我们在 ...
- 为什么MySQL不推荐使用子查询和join
前言: 1.对于mysql,不推荐使用子查询和join是因为本身join的效率就是硬伤,一旦数据量很大效率就很难保证,强烈推荐分别根据索引单表取数据,然后在程序里面做join,merge数据. 2.子 ...
- C++ 连接Oracle
下面是一个ADO方式连接Oracle的小程序部分代码...... 首先是Oracle的配置.在Oracle的安装路径下找到:Oracle\network\ADMIN\tnsnames.ora文件.配置 ...