7.12 NOI模拟赛 积性函数求和 数论基础变换 莫比乌斯反演


神题!
一眼powerful number 复习了一下+推半天。
可以发现G函数只能为\(\sum_{d}[d|x]d\)
不断的推 可以发现最后需要求很多块G函数的前缀和 发现只有\(\sqrt(n)\)的复杂度。
于是自闭了。不过这个做法可以跑过\(1e9\) 第二个subtask没有那么严格所以可以跑过 不过我CE了2333...
也没考虑\(min_25\)筛 可能学的不太精通。。
正解是发现 \(f(n)=(p^{k1}+1)(p^{k2}+1)...\)
然后 将其展开 求每个数字对n的贡献 即枚举上述状态的每一项.
那么在求前缀和中i可以被统计到答案中的标志为存在令一个数字j 满足\(i\cdot j\leq n\)且\((i,j)=1\)
那么其实答案为 \(\sum_{i=1}^n\sum_{j=1}^{\frac{n}{i}}[(i,j)=1]i\)
莫比乌斯反演一下可以得到.
\(\sum_{x=1}^n\mu(x)\sum_{i=1}^{\frac{n}{x}}i\frac{n}{i\cdot x^2}\)
这其实就可以做了。
考虑到\(\frac{n}{i\cdot x^2}\)有值 那么显然 \(x\leq \sqrt n\)
且 \(i\leq \frac{n}{x^2}\)
那么上述式子枚举范围可以变一下.\(\sum_{x=1}^{\sqrt n}\mu(x)\sum_{i=1}^{\frac{n}{x^2}}i\frac{n}{i\cdot x^2}\)
左边暴力枚举 右边整除分块。可以证明这样复杂度为\(\sqrt n\cdot logn\)
可能有点卡常 考虑线性筛出 \(d_n\)表示\(\sum_{i=1}^{n}i\frac{n}{i}\)
考虑右边的实际意义 约数和的前缀和 那么只需要筛出每个数字约数和 再前缀和一下即可。
code
//#include<bits\stdc++.h>
#include<iostream>
#include<iomanip>
#include<cstdio>
#include<cstring>
#include<string>
#include<ctime>
#include<cmath>
#include<cctype>
#include<cstdlib>
#include<queue>
#include<deque>
#include<stack>
#include<vector>
#include<algorithm>
#include<utility>
#include<bitset>
#include<set>
#include<map>
#define ll long long
#define db double
#define INF 1000000000000000ll
#define ldb long double
#define pb push_back
#define put_(x) printf("%d ",x);
#define get(x) x=read()
#define gt(x) scanf("%d",&x)
#define gi(x) scanf("%lf",&x)
#define put(x) printf("%d\n",x)
#define putl(x) printf("%lld\n",x)
#define gc(a) scanf("%s",a+1)
#define rep(p,n,i) for(RE int i=p;i<=n;++i)
#define go(x) for(ll i=lin[x],tn=ver[i];i;tn=ver[i=nex[i]])
#define fep(n,p,i) for(RE ll i=n;i>=p;--i)
#define vep(p,n,i) for(RE ll i=p;i<n;++i)
#define pii pair<ll,ll>
#define mk make_pair
#define RE register
#define P 1000000007
#define gf(x) scanf("%lf",&x)
#define pf(x) ((x)*(x))
#define uint unsigned long long
#define ui unsigned
#define EPS 1e-4
#define sq sqrt
#define S second
#define F first
using namespace std;
char buf[1<<15],*fs,*ft;
inline char getc()
{
return (fs==ft&&(ft=(fs=buf)+fread(buf,1,1<<15,stdin),fs==ft))?0:*fs++;
}
inline ll read()
{
RE ll x=0,f=1;RE char ch=getc();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getc();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getc();}
return x*f;
}
const ll MAXN=4000010;
ll n;
int m,mod,top,INV2;
int p[MAXN],mu[MAXN],v[MAXN],g[MAXN],w[MAXN];
inline void prepare()
{
mu[1]=g[1]=1;
rep(2,m,i)
{
if(!v[i])v[i]=p[++top]=i,w[i]=i,mu[i]=-1;
if(w[i]==i)g[i]=(g[i/v[i]]+i)%mod;
else g[i]=(ll)g[i/w[i]]*g[w[i]]%mod;
rep(1,top,j)
{
if(p[j]>m/i)break;
v[p[j]*i]=p[j];
if(v[i]==p[j])
{
w[p[j]*i]=w[i]*p[j];
break;
}
w[p[j]*i]=p[j];mu[p[j]*i]=-mu[i];
}
}
rep(1,m,i)g[i]=(g[i-1]+g[i])%mod;
}
inline int solve(ll n)
{
if(n<=m)return g[n]*2%mod;
if(n>=mod)
{
ll ww,w1;
int ans=0;
for(ll i=1;i<=n;i=ww+1)
{
w1=n/i;ww=n/w1;
ans=(ans+(i+ww)%mod*((ww-i+1)%mod)%mod*(w1%mod))%mod;
}
return ans;
}
else
{
ll ww,w1;
int ans=0;
for(ll i=1;i<=n;i=ww+1)
{
w1=n/i;ww=n/w1;
ans=(ans+(i+ww)*(ww-i+1)%mod*w1)%mod;
}
return ans;
}
}
signed main()
{
freopen("1.in","r",stdin);
get(n);get(mod);m=(int)sqrt(n*1.0);INV2=(1+mod)>>1;
prepare();int ans=0;
rep(1,m,i)if(mu[i])ans=(ans+mu[i]*(ll)i*solve(n/i/i))%mod;
ans=(ans+mod)%mod;put((ll)ans*INV2%mod);return 0;
}
7.12 NOI模拟赛 积性函数求和 数论基础变换 莫比乌斯反演的更多相关文章
- 7.12 NOI模拟赛 生成树 装压dp vector装压
LINK:生成树 这场比赛我打的真失败 T3是比较容易的 却一直刚 那道"数论" 10分其实搜一下全排列. 30分容易想到对边进行装压dp. 不过存在一些细节 可以对于一个连通块的 ...
- 7.12 NOI模拟赛 探险队 期望 博弈 dp 最坏情况下最优策略 可并堆
LINK:探险队 非常难的题目 考试的时候爆零了 完全没有想到到到底怎么做 (当时去刚一道数论题了. 首先考虑清楚一件事情 就是当前是知道整张地图的样子 但是不清楚到底哪条边断了. 所以我们要做的其实 ...
- 【Learning】积性函数前缀和——洲阁筛(min_25写法)
问题描述 洲阁筛解决的问题主要是\(n\)范围较大的积性函数前缀和. 已知一积性函数\(f(i)\),求\(\sum_{i=1}^nf(i)\). \(n\leq10^{12}\). 求解方法 如 ...
- NOI 模拟赛 #2
得分非常惨惨,半个小时写的纯暴力 70 分竟然拿了 rank 1... 如果 OYJason 和 wxjor 在可能会被爆踩吧 嘤 T1 欧拉子图 给一个无向图,如果一个边集的导出子图是一个欧拉回路, ...
- hdu1452 Happy 2004(规律+因子和+积性函数)
Happy 2004 题意:s为2004^x的因子和,求s%29. (题于文末) 知识点: 素因子分解:n = p1 ^ e1 * p2 ^ e2 *..........*pn ^ en 因子 ...
- HDU 1452 Happy 2004 (逆元+快速幂+积性函数)
G - Happy 2004 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Subm ...
- HDU 1452 Happy 2004(因子和的积性函数)
题目链接 题意 : 给你一个X,让你求出2004的X次方的所有因子之和,然后对29取余. 思路 : 原来这就是积性函数,点这里这里这里,这里讲得很详细. 在非数论的领域,积性函数指所有对于任何a,b都 ...
- HDU1452Happy 2004(高次幂取模+积性函数+逆元)
题目意思:2004^x的所有正因数的和(S)对29求余:输出结果: 原题链接 题目解析:解析参照来源:点击打开链接 因子和 6的因子是1,2,3,6; 6的因子和是s(6)=1+2+3+6=12; 2 ...
- HDU 1452 Happy 2004(因数和+费马小定理+积性函数)
Happy 2004 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total ...
随机推荐
- 微信解密encryptedDataStr获取用户信息
A:<button open-type="getPhoneNumber" bindgetphonenumber="getPhoneNumber">& ...
- 【题解】p1809 过河问题
原题传送门 题目分析 现有n个人在东岸,要过河去西岸.开始东岸有一艘船,船最多可承载2人,过河时间以耗时最长的人所需时间为准. 给定n个人的过河时间a,求所有人从东岸到西岸所需的最短时间. 当\(n= ...
- day81 初识drf
目录 一.web应用模式 二.API接口 1 rpc(远程过程调用/远程服务调用) 2 restful(资源状态转换) 三.RESTful API规范 四.序列化 五.Django Rest_Fram ...
- 机器学习实战基础(十五):sklearn中的数据预处理和特征工程(八)特征选择 之 Filter过滤法(二) 相关性过滤
相关性过滤 方差挑选完毕之后,我们就要考虑下一个问题:相关性了. 我们希望选出与标签相关且有意义的特征,因为这样的特征能够为我们提供大量信息.如果特征与标签无关,那只会白白浪费我们的计算内存,可能还会 ...
- Python面试【315+道题】
第一部分 Python基础篇(80题) 为什么学习Python? 通过什么途径学习的Python? Python和Java.PHP.C.C#.C++等其他语言的对比? 简述解释型和编译型编程语言? P ...
- C#中String与byte[]的相互转换
从文件中读取字符串 string filePath = @"C:\Temp.xml"; string xmlString= File.ReadAllText(filePath); ...
- 04-Python函数
一.简介 函数是可重用的程序代码块.函数的作用,不仅可以实现代码的复用,更能实现代码的一致性.一致性指的是,只要修改函数的代码,则所有调用该函数的地方都能得到体现. 函数用关键字def来定义,def关 ...
- C、C++、Java到Python,编程入门学习什么语言好?
摘要:回顾编程语言几十年来的兴衰起伏,似乎也折射了整个信息产业的变迁消亡,想要在技术的洪流里激流勇进,找准并学精一两门编程语言更加显得至关重要. 最近,TIOBE更新了7月的编程语言榜单,常年霸榜的C ...
- MYSQL 使用基础 - 这么用就对了
这篇文章主要梳理了 SQL 的基础用法,会涉及到以下方面内容: SQL大小写的规范 数据库的类型以及适用场景 SELECT 的执行过程 WHERE 使用规范 MySQL 中常见函数 子查询分类 如何选 ...
- 软件测试中的微信小程序怎么测试?
1.没有需求文档时,如何测试小程序?现在大多数公司的开发模式是:敏捷模式(用户故事) ,即以什么身份做什么事情会出现什么样的结果.那实际测试过程中,没有需求文档时,测试可以采用以下方式更好的完成测试工 ...