前言

Vue 核心中除了响应式原理外,视图渲染也是重中之重。我们都知道每次更新数据,都会走视图渲染的逻辑,而这当中牵扯的逻辑也是十分繁琐。

本文主要解析的是初始化视图渲染流程,你将会了解到从挂载组件开始,Vue 是如何构建 VNode,又是如何将 VNode 转为真实节点并挂载到页面。

挂载组件($mount)

Vue 是一个构造函数,通过 new 关键字进行实例化。

// src/core/instance/index.js
function Vue (options) {
if (process.env.NODE_ENV !== 'production' &&
!(this instanceof Vue)
) {
warn('Vue is a constructor and should be called with the `new` keyword')
}
this._init(options)
}

在实例化时,会调用 _init 进行初始化。

// src/core/instance/init.js
Vue.prototype._init = function (options?: Object) {
const vm: Component = this
// ...
if (vm.$options.el) {
vm.$mount(vm.$options.el)
}
}

_init 内会调用 $mount 来挂载组件,而 $mount 方法实际调用的是 mountComponent

// src/core/instance/lifecycle.js
export function mountComponent (
vm: Component,
el: ?Element,
hydrating?: boolean
): Component {
vm.$el = el
// ...
callHook(vm, 'beforeMount') let updateComponent
/* istanbul ignore if */
if (process.env.NODE_ENV !== 'production' && config.performance && mark) {
// ...
} else {
updateComponent = () => {
vm._update(vm._render(), hydrating) // 渲染页面函数
}
} // we set this to vm._watcher inside the watcher's constructor
// since the watcher's initial patch may call $forceUpdate (e.g. inside child
// component's mounted hook), which relies on vm._watcher being already defined
new Watcher(vm, updateComponent, noop, { // 渲染watcher
before () {
if (vm._isMounted && !vm._isDestroyed) {
callHook(vm, 'beforeUpdate')
}
}
}, true /* isRenderWatcher */)
hydrating = false // manually mounted instance, call mounted on self
// mounted is called for render-created child components in its inserted hook
if (vm.$vnode == null) {
vm._isMounted = true
callHook(vm, 'mounted')
}
return vm
}

mountComponent 除了调用一些生命周期的钩子函数外,最主要是 updateComponent,它就是负责渲染视图的核心方法,其只有一行核心代码:

vm._update(vm._render(), hydrating)

vm._render 创建并返回 VNodevm._update 接受 VNode 将其转为真实节点。

updateComponent 会被传入 渲染Watcher,每当数据变化触发 Watcher 更新就会执行该函数,重新渲染视图。updateComponent 在传入 渲染Watcher 后会被执行一次进行初始化页面渲染。

所以我们着重分析的是 vm._rendervm._update 两个方法,这也是本文主要了解的原理——Vue 视图渲染流程。

构建VNode(_render)

首先是 _render 方法,它用来构建组件的 VNode

// src/core/instance/render.js
Vue.prototype._render = function () {
const { render, _parentVnode } = vm.$options
vnode = render.call(vm._renderProxy, vm.$createElement)
return vnode
}

_render 内部会执行 render 方法并返回构建好的 VNoderender 一般是模板编译后生成的方法,也有可能是用户自定义。

// src/core/instance/render.js
export function initRender (vm) {
vm._c = (a, b, c, d) => createElement(vm, a, b, c, d, false)
vm.$createElement = (a, b, c, d) => createElement(vm, a, b, c, d, true)
}

initRender 在初始化就会执行为实例上绑定两个方法,分别是 vm._cvm.$createElement。它们两者都是调用 createElement 方法,它是创建 VNode 的核心方法,最后一个参数用于区别是否为用户自定义。

vm._c 应用场景是在编译生成的 render 函数中调用,vm.$createElement 则用于用户自定义 render 函数的场景。就像上面 render 在调用时会传入参数 vm.$createElement,我们在自定义 render 函数接收到的参数就是它。

createElement

// src/core/vdom/create-elemenet.js
export function createElement (
context: Component,
tag: any,
data: any,
children: any,
normalizationType: any,
alwaysNormalize: boolean
): VNode | Array<VNode> {
if (Array.isArray(data) || isPrimitive(data)) {
normalizationType = children
children = data
data = undefined
}
if (isTrue(alwaysNormalize)) {
normalizationType = ALWAYS_NORMALIZE
}
return _createElement(context, tag, data, children, normalizationType)
}

createElement 方法实际上是对 _createElement 方法的封装,它允许传入的参数更加灵活。

export function _createElement (
context: Component,
tag?: string | Class<Component> | Function | Object,
data?: VNodeData,
children?: any,
normalizationType?: number
): VNode | Array<VNode> {
if (isDef(data) && isDef(data.is)) {
tag = data.is
}
if (!tag) {
// in case of component :is set to falsy value
return createEmptyVNode()
}
// support single function children as default scoped slot
if (Array.isArray(children) &&
typeof children[0] === 'function'
) {
data = data || {}
data.scopedSlots = { default: children[0] }
children.length = 0
}
if (normalizationType === ALWAYS_NORMALIZE) {
children = normalizeChildren(children)
} else if (normalizationType === SIMPLE_NORMALIZE) {
children = simpleNormalizeChildren(children)
}
let vnode, ns
if (typeof tag === 'string') {
let Ctor
ns = (context.$vnode && context.$vnode.ns) || config.getTagNamespace(tag)
if (config.isReservedTag(tag)) {
// platform built-in elements
vnode = new VNode(
config.parsePlatformTagName(tag), data, children,
undefined, undefined, context
)
} else if (isDef(Ctor = resolveAsset(context.$options, 'components', tag))) {
// component
vnode = createComponent(Ctor, data, context, children, tag)
} else {
// unknown or unlisted namespaced elements
// check at runtime because it may get assigned a namespace when its
// parent normalizes children
vnode = new VNode(
tag, data, children,
undefined, undefined, context
)
}
} else {
// direct component options / constructor
vnode = createComponent(tag, data, context, children)
}
if (Array.isArray(vnode)) {
return vnode
} else if (isDef(vnode)) {
if (isDef(ns)) applyNS(vnode, ns)
if (isDef(data)) registerDeepBindings(data)
return vnode
} else {
return createEmptyVNode()
}
}

_createElement 参数中会接收 children,它表示当前 VNode 的子节点,因为它是任意类型的,所以接下来需要将其规范为标准的 VNode 数组;

// 这里规范化 children
if (normalizationType === ALWAYS_NORMALIZE) {
children = normalizeChildren(children)
} else if (normalizationType === SIMPLE_NORMALIZE) {
children = simpleNormalizeChildren(children)
}

simpleNormalizeChildrennormalizeChildren 均用于规范化 children。由 normalizationType 判断 render 函数是编译生成的还是用户自定义的。

// 1. When the children contains components - because a functional component
// may return an Array instead of a single root. In this case, just a simple
// normalization is needed - if any child is an Array, we flatten the whole
// thing with Array.prototype.concat. It is guaranteed to be only 1-level deep
// because functional components already normalize their own children.
export function simpleNormalizeChildren (children: any) {
for (let i = 0; i < children.length; i++) {
if (Array.isArray(children[i])) {
return Array.prototype.concat.apply([], children)
}
}
return children
} // 2. When the children contains constructs that always generated nested Arrays,
// e.g. <template>, <slot>, v-for, or when the children is provided by user
// with hand-written render functions / JSX. In such cases a full normalization
// is needed to cater to all possible types of children values.
export function normalizeChildren (children: any): ?Array<VNode> {
return isPrimitive(children)
? [createTextVNode(children)]
: Array.isArray(children)
? normalizeArrayChildren(children)
: undefined
}

simpleNormalizeChildren 方法调用场景是 render 函数当函数是编译生成的。normalizeChildren 方法的调用场景主要是 render 函数是用户手写的。

经过对 children 的规范化,children 变成了一个类型为 VNode 的数组。之后就是创建 VNode 的逻辑。

// src/core/vdom/patch.js
let vnode, ns
if (typeof tag === 'string') {
let Ctor
ns = (context.$vnode && context.$vnode.ns) || config.getTagNamespace(tag)
if (config.isReservedTag(tag)) {
// platform built-in elements
vnode = new VNode(
config.parsePlatformTagName(tag), data, children,
undefined, undefined, context
)
} else if (isDef(Ctor = resolveAsset(context.$options, 'components', tag))) {
// component
vnode = createComponent(Ctor, data, context, children, tag)
} else {
// unknown or unlisted namespaced elements
// check at runtime because it may get assigned a namespace when its
// parent normalizes children
vnode = new VNode(
tag, data, children,
undefined, undefined, context
)
}
} else {
// direct component options / constructor
vnode = createComponent(tag, data, context, children)
}

如果 tagstring 类型,则接着判断如果是内置的一些节点,创建一个普通 VNode;如果是为已注册的组件名,则通过 createComponent 创建一个组件类型的 VNode;否则创建一个未知的标签的 VNode

如果 tag 不是 string 类型,那就是 Component 类型, 则直接调用 createComponent 创建一个组件类型的 VNode 节点。

最后 _createElement 会返回一个 VNode,也就是调用 vm._render 时创建得到的VNode。之后 VNode 会传递给 vm._update 函数,用于生成真实dom。

生成真实dom(_update)

// src/core/instance/lifecycle.js
Vue.prototype._update = function (vnode: VNode, hydrating?: boolean) {
const vm: Component = this
const prevEl = vm.$el
const prevVnode = vm._vnode
const prevActiveInstance = activeInstance
activeInstance = vm
vm._vnode = vnode
// Vue.prototype.__patch__ is injected in entry points
// based on the rendering backend used.
if (!prevVnode) {
// initial render
vm.$el = vm.__patch__(vm.$el, vnode, hydrating, false /* removeOnly */)
} else {
// updates
vm.$el = vm.__patch__(prevVnode, vnode)
}
activeInstance = prevActiveInstance
// update __vue__ reference
if (prevEl) {
prevEl.__vue__ = null
}
if (vm.$el) {
vm.$el.__vue__ = vm
}
// if parent is an HOC, update its $el as well
if (vm.$vnode && vm.$parent && vm.$vnode === vm.$parent._vnode) {
vm.$parent.$el = vm.$el
}
// updated hook is called by the scheduler to ensure that children are
// updated in a parent's updated hook.
}

_update 里最核心的方法就是 vm.__patch__ 方法,不同平台的 __patch__ 方法的定义会稍有不同,在 web 平台中它是这样定义的:

// src/platforms/web/runtime/index.js
import { patch } from './patch'
// install platform patch function
Vue.prototype.__patch__ = inBrowser ? patch : noop

可以看到 __patch__ 实际调用的是 patch 方法。

// src/platforms/web/runtime/patch.js
import * as nodeOps from 'web/runtime/node-ops'
import { createPatchFunction } from 'core/vdom/patch'
import baseModules from 'core/vdom/modules/index'
import platformModules from 'web/runtime/modules/index' // the directive module should be applied last, after all
// built-in modules have been applied.
const modules = platformModules.concat(baseModules) export const patch: Function = createPatchFunction({ nodeOps, modules })

patch 方法是由 createPatchFunction 方法创建返回出来的函数。

// src/core/vdom/patch.js
const hooks = ['create', 'activate', 'update', 'remove', 'destroy'] export function createPatchFunction (backend) {
let i, j
const cbs = {}
const { modules, nodeOps } = backend for (i = 0; i < hooks.length; ++i) {
cbs[hooks[i]] = []
for (j = 0; j < modules.length; ++j) {
if (isDef(modules[j][hooks[i]])) {
cbs[hooks[i]].push(modules[j][hooks[i]])
}
}
} // ...
return function patch (oldVnode, vnode, hydrating, removeOnly){}
}

这里有两个比较重要的对象 nodeOpsmodulesnodeOps 是封装的原生dom操作方法,在生成真实节点树的过程中,dom相关操作都是调用 nodeOps 内的方法。

modules 是待执行的钩子函数。在进入函数时,会将不同模块的钩子函数分类放置到 cbs 中,其中包括自定义指令钩子函数,ref 钩子函数。在 patch 阶段,会根据操作节点的行为取出对应类型进行调用。

patch

// initial render
vm.$el = vm.__patch__(vm.$el, vnode, hydrating, false /* removeOnly */)

在首次渲染时,vm.$el 对应的是根节点 dom 对象,也就是我们熟知的 id 为 app 的 div。它作为 oldVNode 参数传入 patch

return function patch (oldVnode, vnode, hydrating, removeOnly) {
if (isUndef(vnode)) {
if (isDef(oldVnode)) invokeDestroyHook(oldVnode)
return
} let isInitialPatch = false
const insertedVnodeQueue = [] if (isUndef(oldVnode)) {
// empty mount (likely as component), create new root element
isInitialPatch = true
createElm(vnode, insertedVnodeQueue)
} else {
const isRealElement = isDef(oldVnode.nodeType)
if (!isRealElement && sameVnode(oldVnode, vnode)) {
// patch existing root node
patchVnode(oldVnode, vnode, insertedVnodeQueue, null, null, removeOnly)
} else {
if (isRealElement) {
// mounting to a real element
// check if this is server-rendered content and if we can perform
// a successful hydration.
if (oldVnode.nodeType === 1 && oldVnode.hasAttribute(SSR_ATTR)) {
oldVnode.removeAttribute(SSR_ATTR)
hydrating = true
}
if (isTrue(hydrating)) {
if (hydrate(oldVnode, vnode, insertedVnodeQueue)) {
invokeInsertHook(vnode, insertedVnodeQueue, true)
return oldVnode
} else if (process.env.NODE_ENV !== 'production') {
warn(
'The client-side rendered virtual DOM tree is not matching ' +
'server-rendered content. This is likely caused by incorrect ' +
'HTML markup, for example nesting block-level elements inside ' +
'<p>, or missing <tbody>. Bailing hydration and performing ' +
'full client-side render.'
)
}
}
// either not server-rendered, or hydration failed.
// create an empty node and replace it
oldVnode = emptyNodeAt(oldVnode)
} // replacing existing element
const oldElm = oldVnode.elm
const parentElm = nodeOps.parentNode(oldElm) // create new node
createElm(
vnode,
insertedVnodeQueue,
// extremely rare edge case: do not insert if old element is in a
// leaving transition. Only happens when combining transition +
// keep-alive + HOCs. (#4590)
oldElm._leaveCb ? null : parentElm,
nodeOps.nextSibling(oldElm)
) // update parent placeholder node element, recursively
if (isDef(vnode.parent)) {
let ancestor = vnode.parent
const patchable = isPatchable(vnode)
while (ancestor) {
for (let i = 0; i < cbs.destroy.length; ++i) {
cbs.destroy[i](ancestor)
}
ancestor.elm = vnode.elm
if (patchable) {
for (let i = 0; i < cbs.create.length; ++i) {
cbs.create[i](emptyNode, ancestor)
}
// #6513
// invoke insert hooks that may have been merged by create hooks.
// e.g. for directives that uses the "inserted" hook.
const insert = ancestor.data.hook.insert
if (insert.merged) {
// start at index 1 to avoid re-invoking component mounted hook
for (let i = 1; i < insert.fns.length; i++) {
insert.fns[i]()
}
}
} else {
registerRef(ancestor)
}
ancestor = ancestor.parent
}
} // destroy old node
if (isDef(parentElm)) {
removeVnodes([oldVnode], 0, 0)
} else if (isDef(oldVnode.tag)) {
invokeDestroyHook(oldVnode)
}
}
} invokeInsertHook(vnode, insertedVnodeQueue, isInitialPatch)
return vnode.elm
}

通过检查属性 nodeType(真实节点才有的属性), 判断 oldVnode 是否为真实节点。

const isRealElement = isDef(oldVnode.nodeType)
if (isRealElement) {
// ...
oldVnode = emptyNodeAt(oldVnode)
}

很明显第一次的 isRealElement 是为 true,因此会调用 emptyNodeAt 将其转为 VNode

function emptyNodeAt (elm) {
return new VNode(nodeOps.tagName(elm).toLowerCase(), {}, [], undefined, elm)
}

接着会调用 createElm 方法,它就是将 VNode 转为真实dom 的核心方法:

function createElm (
vnode,
insertedVnodeQueue,
parentElm,
refElm,
nested,
ownerArray,
index
) {
if (isDef(vnode.elm) && isDef(ownerArray)) {
// This vnode was used in a previous render!
// now it's used as a new node, overwriting its elm would cause
// potential patch errors down the road when it's used as an insertion
// reference node. Instead, we clone the node on-demand before creating
// associated DOM element for it.
vnode = ownerArray[index] = cloneVNode(vnode)
} vnode.isRootInsert = !nested // for transition enter check
if (createComponent(vnode, insertedVnodeQueue, parentElm, refElm)) {
return
} const data = vnode.data
const children = vnode.children
const tag = vnode.tag
if (isDef(tag)) {
vnode.elm = vnode.ns
? nodeOps.createElementNS(vnode.ns, tag)
: nodeOps.createElement(tag, vnode)
setScope(vnode) /* istanbul ignore if */
if (__WEEX__) {
// ...
} else {
createChildren(vnode, children, insertedVnodeQueue)
if (isDef(data)) {
invokeCreateHooks(vnode, insertedVnodeQueue)
}
insert(parentElm, vnode.elm, refElm)
} if (process.env.NODE_ENV !== 'production' && data && data.pre) {
creatingElmInVPre--
}
} else if (isTrue(vnode.isComment)) {
vnode.elm = nodeOps.createComment(vnode.text)
insert(parentElm, vnode.elm, refElm)
} else {
vnode.elm = nodeOps.createTextNode(vnode.text)
insert(parentElm, vnode.elm, refElm)
}
}

一开始会调用 createComponent 尝试创建组件类型的节点,如果成功会返回 true。在创建过程中也会调用 $mount 进行组件范围内的挂载,所以走的还是 patch 这套流程。

if (createComponent(vnode, insertedVnodeQueue, parentElm, refElm)) {
return
}

如果没有完成创建,代表该 VNode 对应的是真实节点,往下继续创建真实节点的逻辑。

vnode.elm = vnode.ns
? nodeOps.createElementNS(vnode.ns, tag)
: nodeOps.createElement(tag, vnode)

根据 tag 创建对应类型真实节点,赋值给 vnode.elm,它作为父节点容器,创建的子节点会被放到里面。

然后调用 createChildren 创建子节点:

function createChildren (vnode, children, insertedVnodeQueue) {
if (Array.isArray(children)) {
if (process.env.NODE_ENV !== 'production') {
checkDuplicateKeys(children)
}
for (let i = 0; i < children.length; ++i) {
createElm(children[i], insertedVnodeQueue, vnode.elm, null, true, children, i)
}
} else if (isPrimitive(vnode.text)) {
nodeOps.appendChild(vnode.elm, nodeOps.createTextNode(String(vnode.text)))
}
}

内部进行遍历子节点数组,再次调用 createElm 创建节点,而上面创建的 vnode.elm 作为父节点传入。如此循环,直到没有子节点,就会创建文本节点插入到 vnode.elm 中。

执行完成后出来,会调用 invokeCreateHooks,它负责执行 dom 操作时的 create 钩子函数,同时将 VNode 加入到 insertedVnodeQueue 中:

function invokeCreateHooks (vnode, insertedVnodeQueue) {
for (let i = 0; i < cbs.create.length; ++i) {
cbs.create[i](emptyNode, vnode)
}
i = vnode.data.hook // Reuse variable
if (isDef(i)) {
if (isDef(i.create)) i.create(emptyNode, vnode)
if (isDef(i.insert)) insertedVnodeQueue.push(vnode)
}
}

最后一步就是调用 insert 方法将节点插入到父节点:

function insert (parent, elm, ref) {
if (isDef(parent)) {
if (isDef(ref)) {
if (nodeOps.parentNode(ref) === parent) {
nodeOps.insertBefore(parent, elm, ref)
}
} else {
nodeOps.appendChild(parent, elm)
}
}
}

可以看到 Vue 是通过递归调用 createElm 来创建节点树的。同时也说明最深的子节点会先调用 insert 插入节点。所以整个节点树的插入顺序是“先子后父”。插入节点方法就是原生dom的方法 insertBeforeappendChild

if (isDef(parentElm)) {
removeVnodes([oldVnode], 0, 0)
}

createElm 流程走完后,构建完成的节点树已经插入到页面上了。其实 Vue 在初始化渲染页面时,并不是把原来的根节点 app 给真正替换掉,而是在其后面插入一个新的节点,接着再把旧节点给移除掉。

所以在 createElm 之后会调用 removeVnodes 来移除旧节点,它里面同样是调用的原生dom方法 removeChild

invokeInsertHook(vnode, insertedVnodeQueue, isInitialPatch)
function invokeInsertHook (vnode, queue, initial) {
// delay insert hooks for component root nodes, invoke them after the
// element is really inserted
if (isTrue(initial) && isDef(vnode.parent)) {
vnode.parent.data.pendingInsert = queue
} else {
for (let i = 0; i < queue.length; ++i) {
queue[i].data.hook.insert(queue[i])
}
}
}

patch 的最后就是调用 invokeInsertHook 方法,触发节点插入的钩子函数。

至此整个页面渲染的流程完毕~

总结

初始化调用 $mount 挂载组件。

_render 开始构建 VNode,核心方法为 createElement,一般会创建普通的 VNode ,遇到组件就创建组件类型的 VNode,否则就是未知标签的 VNode,构建完成传递给 _update

patch 阶段根据 VNode 创建真实节点树,核心方法为 createElm,首先遇到组件类型的 VNode,内部会执行 $mount,再走一遍相同的流程。普通节点类型则创建一个真实节点,如果它有子节点开始递归调用 createElm,使用 insert 插入子节点,直到没有子节点就填充内容节点。最后递归完成后,同样也是使用 insert 将整个节点树插入到页面中,再将旧的根节点移除。

往期相关文章:

手摸手带你理解Vue响应式原理

手摸手带你理解Vue的Computed原理

手摸手带你理解Vue的Watch原理

Vue你不得不知道的异步更新机制和nextTick原理

Vue视图渲染原理解析,从构建VNode到生成真实节点树的更多相关文章

  1. vue响应式原理解析

    # Vue响应式原理解析 首先定义了四个核心的js文件 - 1. observer.js 观察者函数,用来设置data的get和set函数,并且把watcher存放在dep中 - 2. watcher ...

  2. 「进阶篇」Vue Router 核心原理解析

    前言 此篇为进阶篇,希望读者有 Vue.js,Vue Router 的使用经验,并对 Vue.js 核心原理有简单了解: 不会大篇幅手撕源码,会贴最核心的源码,对应的官方仓库源码地址会放到超上,可以配 ...

  3. Vue双向数据绑定原理解析

    基本原理 Vue.采用数据劫持结合发布者-订阅者模式的方式,通过Object.defineProperty()来劫持各个属性的setter和getter,数据变动时发布消息给订阅者,触发相应函数的回调 ...

  4. React 服务器渲染原理解析与实践

    第1章 服务器端渲染基础本章主要讲解客户端与服务器端渲染的概念,分析客户端渲染和服务器端渲染的利弊,带大家对服务器端渲染有一个粗浅认识. 1-1 课程导学1-2 什么是服务器端渲染1-3 什么是客户端 ...

  5. 数据库之 MySQL --- 视图的原理解析与创建(八)

    个人博客网:https://wushaopei.github.io/    (你想要这里多有) 1.什么是视图? 视图:MySQL从5.0.1版本开始提供视图功能.一种虚拟存在的表,行和列的数据来自定 ...

  6. Vue源码学习(零):内部原理解析

    本篇文章是在阅读<剖析 Vue.js 内部运行机制>小册子后总结所得,想要了解详细内容,请参考原文:https://juejin.im/book/5a36661851882538e2259 ...

  7. APPcrawler基础原理解析及使用

    一.背景 一年前,我们一直在用monkey进行Android 的稳定性测试 ,主要目的就是为了测试app 是否会产生Crash,是否会有ANR,页面错误等问题,在monkey测试过程中,实现了脱离Ca ...

  8. 深入解析vue响应式原理

    摘要:本文主要通过结合vue官方文档及源码,对vue响应式原理进行深入分析. 1.定义 作为vue最独特的特性,响应式可以说是vue的灵魂了,表面上看就是数据发生变化后,对应的界面会重新渲染,那么响应 ...

  9. Vue 中是如何解析 template 字符串为 VNode 的?

    在接触 React 时候,我只了解到通过 babel 可以把 JSX 转成 VNode(通过调用 React.createElement 方法),但是对其具体是如何转换的却不了解. 很明显,回答失败. ...

随机推荐

  1. redis入门指南(三)—— 事务、过期时间、SORT命令、消息通知与管道

    写在前面 学习<redis入门指南>笔记,结合实践,只记录重要,明确,属于新知的相关内容. 事务 1.redis中的事务由一组命令的集合组成,要么都执行,要么都不执行,同时redis的事务 ...

  2. MySQL 面试题 24 问

    MySQL 是数据库中的主流中的主流,小中性公司基本都以它为主,而作为后端开发和数据库工程师来说,MySQL 是面试必须要过的一关.以下是小编整理网络的 MySQL 面试高频题,希望对大家有所帮助. ...

  3. nodejs之数据库连接

    nodejs 对 MySQL.mongodb.redis 数据库的连接方式. MySQL: var mysql = require('mysql') var { MYSQL } = require(' ...

  4. 【高性能Mysql 】读书笔记(二)

    第4章 Schema 与数据类型优化 本文为<高性能Mysql 第三版>第四章读书笔记,Mysql版本为5.5 选择优化的数据类型 选择合适数据类型的三个原则 更小的通常更好 - 速度更快 ...

  5. Spring AOP底层实现分析

    Spring AOP代理对象的生成 Spring提供了两种方式来生成代理对象: JdkProxy和Cglib,具体使用哪种方式生成由AopProxyFactory根据AdvisedSupport对象的 ...

  6. python+requests实现接口自动化

    1. 前言 今年2月调去支持项目接口测试,测试过程中使用过postman.jmeter工具,基本能满足使用,但是部分情况下使用较为麻烦.比如:部分字段存在唯一性校验或字段间有业务性校验,每次请求均需手 ...

  7. Ethical Hacking - Web Penetration Testing(4)

    CODE EXECUTION VULNS Allows an attacker to execute OS commands. Windows or Linux commands. Can be us ...

  8. Mobilenet V1

    目录 1. Depth Separable Convolution 2. 网络结构 3. 宽度因子和分辨率因子 4. 代码实现 参考博客: https://cuijiahua.com/blog/201 ...

  9. android 6.0三星5.1.1Root

    现在google是越来越不给我们留活路了… 从android 6.0开始, 三星的5.1.1开始. 默认都开启了data分区的forceencryption, 也就是强制加密. 也开启了/system ...

  10. 深入探究JVM之垃圾回收器

    @ 目录 前言 正文 一.垃圾收集算法 标记-复制 标记-清除 标记-整理 分代回收 二.常用的垃圾回收器 Serial/SerialOld ParNew Parallel Scavenge/Para ...