题意:\(1\sim N\) 号工厂,第\(i\) 个工厂有\(P_i\)个成品,第\(i\)个工厂建立仓库需要\(C_i\)的费用,该工厂距离第一个工厂的距离为\(X_i\),编号小的工厂只能往编号大的工厂搬用成品,每单位成品搬每单位距离需要花费1,问所有成品搬到工厂里面所需的最少费用是多少

分析

设\(f[i]\) 为第 i 个工厂建立仓库,前 i 个工厂的成品都搬到仓库中的最小花费,则容易得到动态转移方程:

\[f[i] = min(f[j] + P_{j+1}(X_i-X_{j+1}) + P_{j+2}(X_i-X_{j+2})+\cdots + P_{i-1}(X_i-X_{i-1}))+C_i
\]

通式为

\[f[i]=min(f[j]+\sum_{k=j+1}^{i-1}P_k\cdot X_i-\sum_{k=j+1}^{i-1}P_k\cdot X_k)+C_i
\]

令 \(s[i] = \sum_1^i P[i], ~~g[i] = \sum_1^iP_i\cdot X_i\),

则方程变为

\[f[i] = min(f[j] + X_i\cdot (s[i-1]-s[j])-(g[i-1]-g[j]))+C_i
\]

则对于最优决策 \(j\) ,有

\[f[j]+g[j]=X_i\cdot s[j]+f[i]-X_i\cdot s[i-1]-C_i
\]

也就是要找 \(y = kx+b\),\(k\)已知,找一对\(x,y\)使得截距最小

由于\(X[i]\)是随\(i\)递增的,所以要维护的决策集的斜率也是递增的

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
typedef long long ll;
ll C[N],P[N],X[N],f[N],s[N],g[N];
int n;
int q[N],l,r;
long double slope(int i,int j){
return (long double)((f[i]+g[i]) - (f[j]+g[j]))/(s[i]-s[j]);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld%lld%lld",&X[i],&P[i],&C[i]);
s[i] = s[i-1] + P[i];
g[i] = g[i-1] + P[i] * X[i];
}
l = r = 0;
for(int i=1;i<=n;i++){
while(l < r && slope(q[l],q[l+1]) <= X[i])l++;
int j = q[l];
f[i] = f[j] + (s[i-1] - s[j]) * X[i] - g[i-1] + g[j] + C[i];
while(l < r && slope(q[r-1],q[r]) > slope(q[r-1],i))r--;
q[++r] = i;
}
printf("%lld\n",f[n]);
return 0;
}

P2120 [ZJOI2007] 仓库建设(斜率优化DP)的更多相关文章

  1. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  2. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  3. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  4. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  5. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  6. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  7. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

  8. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  9. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  10. [ZJOI2007]仓库建设(斜率优化)

    L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部 ...

随机推荐

  1. MySQL 标识符到底区分大小写么——官方文档告诉你

    最近在阿里云服务器上部署一个自己写的小 demo 时遇到一点问题,查看 Tomcat 日志后定位到问题出现在与数据库服务器交互的地方,执行 SQL 语句时会返回 指定列.指定名 不存在的错误.多方查证 ...

  2. PHP jquer网页打印插件 PrintArea

    <!DOCTYPE html> <head> <meta charset="utf-8"> <meta http-equiv=" ...

  3. PHP 爬取图片 保存本地

    public function getImage($url,$filename='') { if($url == ''){ return false; } if($filename == ''){ $ ...

  4. Laya 踩坑日记-BitmapFont 字体模糊

    基于bitmap 制作的字体,放到项目中,因为最终使用的是位图字体(所有的字全是一张图片),所以一旦出现压缩./放大等情况的时候, 字体就开始模糊了,暂时没有他好的办法解决

  5. 【Maven】Maven 高级应用

    Maven 高级应用 Maven 基础 Maven 是一个项目管理工具,它有如下好处: 节省磁盘空间 可以一键构建 可以跨平台使用 依赖传递和管理,提高开发效率 一键构建:Maven 自身集成了 To ...

  6. 十八:SQL注入之堆叠及绕WAF

    堆叠查询注入 (双查询注入) stacked injections(堆叠注入)从名词的含义就可以看到是一堆的SQL语句一起执行,而在真实的运用中也是这样的,我们知道在mysql中,主要是命令行中,每一 ...

  7. docker 镜像导入load、导出save以及重命名

    docker 导入导出操作 save 保存(导出)镜像 # 把镜像打包成 .tar # -o 要保存路径.tar # > 要保存路径.tar # docker save 镜像id > /存 ...

  8. zabbix 监控tomcat

    zabbix 监控tomcat server端rpm -ivh jdk-8u20-linux-x64.rpmvi /etc/profileJAVA_HOME=/usr/java/jdk1.8.0_20 ...

  9. kubernets之secret资源

    一  对于一些保密度比较高的文件,k8s又是如何存储的呢? 针对那些保密度比较高的配置文件,例如证书以及一些认证配置不能直接存储在configmap中,而是需要存储在另外一种资源中,需要对存储在里面的 ...

  10. SVM 支持向量机算法-原理篇

    公号:码农充电站pro 主页:https://codeshellme.github.io 本篇来介绍SVM 算法,它的英文全称是 Support Vector Machine,中文翻译为支持向量机. ...