P2120 [ZJOI2007] 仓库建设(斜率优化DP)
题意:\(1\sim N\) 号工厂,第\(i\) 个工厂有\(P_i\)个成品,第\(i\)个工厂建立仓库需要\(C_i\)的费用,该工厂距离第一个工厂的距离为\(X_i\),编号小的工厂只能往编号大的工厂搬用成品,每单位成品搬每单位距离需要花费1,问所有成品搬到工厂里面所需的最少费用是多少
分析
设\(f[i]\) 为第 i 个工厂建立仓库,前 i 个工厂的成品都搬到仓库中的最小花费,则容易得到动态转移方程:
\]
通式为
\]
令 \(s[i] = \sum_1^i P[i], ~~g[i] = \sum_1^iP_i\cdot X_i\),
则方程变为
\]
则对于最优决策 \(j\) ,有
\]
也就是要找 \(y = kx+b\),\(k\)已知,找一对\(x,y\)使得截距最小
由于\(X[i]\)是随\(i\)递增的,所以要维护的决策集的斜率也是递增的
#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
typedef long long ll;
ll C[N],P[N],X[N],f[N],s[N],g[N];
int n;
int q[N],l,r;
long double slope(int i,int j){
return (long double)((f[i]+g[i]) - (f[j]+g[j]))/(s[i]-s[j]);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld%lld%lld",&X[i],&P[i],&C[i]);
s[i] = s[i-1] + P[i];
g[i] = g[i-1] + P[i] * X[i];
}
l = r = 0;
for(int i=1;i<=n;i++){
while(l < r && slope(q[l],q[l+1]) <= X[i])l++;
int j = q[l];
f[i] = f[j] + (s[i-1] - s[j]) * X[i] - g[i-1] + g[j] + C[i];
while(l < r && slope(q[r-1],q[r]) > slope(q[r-1],i))r--;
q[++r] = i;
}
printf("%lld\n",f[n]);
return 0;
}
P2120 [ZJOI2007] 仓库建设(斜率优化DP)的更多相关文章
- P2120 [ZJOI2007]仓库建设 斜率优化dp
好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...
- 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP
做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...
- bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)
题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...
- BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4201 Solved: 1851[Submit][Stat ...
- bzoj1096[ZJOI2007]仓库建设 斜率优化dp
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 5482 Solved: 2448[Submit][Stat ...
- 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp
题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...
- [ZJOI2007] 仓库建设 - 斜率优化dp
大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...
- 【BZOJ-1096】仓库建设 斜率优化DP
1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 3719 Solved: 1633[Submit][Stat ...
- 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化
[BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...
- [ZJOI2007]仓库建设(斜率优化)
L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部 ...
随机推荐
- Cocos Creator 新资源管理系统剖析
目录 1.资源与构建 1.1 creator资源文件基础 1.2 资源构建 1.2.1 图片.图集.自动图集 1.2.2 Prefab与场景 1.2.3 资源文件合并规则 2. 理解与使用 Asset ...
- Java NIO 文件通道 FileChannel 用法
FileChannel 提供了一种通过通道来访问文件的方式,它可以通过带参数 position(int) 方法定位到文件的任意位置开始进行操作,还能够将文件映射到直接内存,提高大文件的访问效率.本文将 ...
- ReentrantLock-源码解析
ReentrantLock类注释 1.可重入互斥锁,意思是表示该锁能够支持一个线程对资源的重复加锁,该锁还支持获取锁的公平和非公平性选择.synchronized关键字隐式的支持重进入. 2.可以通过 ...
- Openstack Ocata 负载均衡安装(二)
Openstack OCATA 负载节点(二) 安装haproxy: apt install haproxy 配置haproxy: vim /etc/haproxy/haproxy.cfg globa ...
- springboot 和 mongdb连接问题 Exception in thread "main" com.mongodb.MongoSecurityException:
1 Exception in thread "main" com.mongodb.MongoSecurityException: Exception authenticating ...
- drop table 命令不回收以前的相关访问权限
drop table 命令不回收以前的相关访问权限,也就是说假如我现在把表删除了,然后再创建一个同名的表时,会自动赋予权限的.
- Java高并发与多线程(二)-----线程的实现方式
今天,我们开始Java高并发与多线程的第二篇,线程的实现方式. 通常来讲,线程有三种基础实现方式,一种是继承Thread类,一种是实现Runnable接口,还有一种是实现Callable接口,当然,如 ...
- 【Python】用字母生成图像
用字母生成图像会用到matplotlib.pyplot库 所以需要安装这个库 pip install matplotlib 等待安装完成即可 ps:由于网络原因,会出现多次的timeout,可以使用国 ...
- 【Linux】sudo配置文件讲解
一.sudo执行命令的流程 将当前用户切换到超级用户下,或切换到指定的用户下, 然后以超级用户或其指定切换到的用户身份执行命令,执行完成后,直接退回到当前用户. 具体工作过程如下: 当用户执行sudo ...
- pandas数据分析API常用操作
1.导入数据 df = pd.read_csv( # 该参数为数据在电脑中的路径,可以不填写 filepath_or_buffer='/Users/Weidu/Desktop/sz000002.csv ...