题意:\(1\sim N\) 号工厂,第\(i\) 个工厂有\(P_i\)个成品,第\(i\)个工厂建立仓库需要\(C_i\)的费用,该工厂距离第一个工厂的距离为\(X_i\),编号小的工厂只能往编号大的工厂搬用成品,每单位成品搬每单位距离需要花费1,问所有成品搬到工厂里面所需的最少费用是多少

分析

设\(f[i]\) 为第 i 个工厂建立仓库,前 i 个工厂的成品都搬到仓库中的最小花费,则容易得到动态转移方程:

\[f[i] = min(f[j] + P_{j+1}(X_i-X_{j+1}) + P_{j+2}(X_i-X_{j+2})+\cdots + P_{i-1}(X_i-X_{i-1}))+C_i
\]

通式为

\[f[i]=min(f[j]+\sum_{k=j+1}^{i-1}P_k\cdot X_i-\sum_{k=j+1}^{i-1}P_k\cdot X_k)+C_i
\]

令 \(s[i] = \sum_1^i P[i], ~~g[i] = \sum_1^iP_i\cdot X_i\),

则方程变为

\[f[i] = min(f[j] + X_i\cdot (s[i-1]-s[j])-(g[i-1]-g[j]))+C_i
\]

则对于最优决策 \(j\) ,有

\[f[j]+g[j]=X_i\cdot s[j]+f[i]-X_i\cdot s[i-1]-C_i
\]

也就是要找 \(y = kx+b\),\(k\)已知,找一对\(x,y\)使得截距最小

由于\(X[i]\)是随\(i\)递增的,所以要维护的决策集的斜率也是递增的

#include <bits/stdc++.h>
using namespace std;
const int N = 1e6+10;
typedef long long ll;
ll C[N],P[N],X[N],f[N],s[N],g[N];
int n;
int q[N],l,r;
long double slope(int i,int j){
return (long double)((f[i]+g[i]) - (f[j]+g[j]))/(s[i]-s[j]);
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
scanf("%lld%lld%lld",&X[i],&P[i],&C[i]);
s[i] = s[i-1] + P[i];
g[i] = g[i-1] + P[i] * X[i];
}
l = r = 0;
for(int i=1;i<=n;i++){
while(l < r && slope(q[l],q[l+1]) <= X[i])l++;
int j = q[l];
f[i] = f[j] + (s[i-1] - s[j]) * X[i] - g[i-1] + g[j] + C[i];
while(l < r && slope(q[r-1],q[r]) > slope(q[r-1],i))r--;
q[++r] = i;
}
printf("%lld\n",f[n]);
return 0;
}

P2120 [ZJOI2007] 仓库建设(斜率优化DP)的更多相关文章

  1. P2120 [ZJOI2007]仓库建设 斜率优化dp

    好题,这题是我理解的第一道斜率优化dp,自然要写一发题解.首先我们要写出普通的表达式,然后先用前缀和优化.然后呢?我们观察发现,x[i]是递增,而我们发现的斜率也是需要是递增的,然后就维护一个单调递增 ...

  2. 洛谷P2120 [ZJOI2007]仓库建设 斜率优化DP

    做的第一道斜率优化\(DP\)QwQ 原题链接1/原题链接2 首先考虑\(O(n^2)\)的做法:设\(f[i]\)表示在\(i\)处建仓库的最小费用,则有转移方程: \(f[i]=min\{f[j] ...

  3. bzoj-1096 1096: [ZJOI2007]仓库建设(斜率优化dp)

    题目链接: 1096: [ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L ...

  4. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  5. bzoj1096[ZJOI2007]仓库建设 斜率优化dp

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 5482  Solved: 2448[Submit][Stat ...

  6. 【bzoj1096】[ZJOI2007]仓库建设 斜率优化dp

    题目描述 L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用.突然有一天,L公司的总裁L ...

  7. [ZJOI2007] 仓库建设 - 斜率优化dp

    大脑真是个很优秀的器官,做事情之前总会想着这太难,真的逼着自己做下去,回头看看,其实也不过如此 很朴素的斜率优化dp了 首先要读懂题目(我的理解能力好BUG啊) 然后设\(dp[i]\)表示处理完前\ ...

  8. 【BZOJ-1096】仓库建设 斜率优化DP

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3719  Solved: 1633[Submit][Stat ...

  9. 【BZOJ1096】[ZJOI2007]仓库建设 斜率优化

    [BZOJ1096][ZJOI2007]仓库建设 Description L公司有N个工厂,由高到底分布在一座山上.如图所示,工厂1在山顶,工厂N在山脚.由于这座山处于高原内陆地区(干燥少雨),L公司 ...

  10. [ZJOI2007]仓库建设(斜率优化)

    L公司有N个工厂,由高到底分布在一座山上. 工厂1在山顶,工厂N在山脚. 由于这座山处于高原内陆地区(干燥少雨),L公司一般把产品直接堆放在露天,以节省费用. 突然有一天,L公司的总裁L先生接到气象部 ...

随机推荐

  1. C++把数字排序

    C++把数字排序 描述 思路 代码 描述 如题,详细如下: 输入不超过1024个数字,以特殊数字结尾,如(-999),把数字从小到大排序. 思路 目前,我们有两种思路可以写: 1是 在输入的时候,排序 ...

  2. NOIP初赛篇——04计算机软件系统

    计算机软件是指计算机系统中的程序及其文档,也是用户与硬件之间的接口,用户主要通过软件与计算机进行交流,软件是计算机的灵魂.没有安装软件的计算机称为"裸机",无法完成任何工作.一般软 ...

  3. 怎么判断是旧版本的ext3还是新版本?

    怎么判断是旧版本的ext3还是新版本的?   ---高性能419

  4. GMT UTC CST ISO 夏令时 时间戳,都是些什么鬼?

    目录 ✍前言 本文提纲 版本约定 ✍正文 GMT:格林威治时间 凭什么格林威治作为标准时间? 地球自转 中国有哪几个时区? 美国有哪几个时区? GMT和Http协议的渊源 UTC:世界标准时间 UTC ...

  5. 【ORA】ORA-19602: cannot backup or copy active file in NOARCHIVELOG mode

    ORA-19602: cannot backup or copy active file in NOARCHIVELOG mode 这个问题是rman备份的时候,发现有问题 原因: 数据库没有开启归档 ...

  6. Spring Boot Scheduled定时任务特性

    SpringBoot中的Scheduled定时任务是Spring Boot中非常常用的特性,用来执行一些比如日切或者日终对账这种定时任务 下面说说使用时要注意的Scheduled的几个特性 Sched ...

  7. java 文件上传的那些事

    文件上传 逻辑 @Value("${sava_path}") private String sava_path; @Override public String saveFile( ...

  8. 远程部署项目,修改catalina.bat文件 完美解决在代理服务器上HttpURLConnection 调接口超时的问题

    远程给客户部署项目,运行时程序调外部接口时总是出不去,经过不懈努力,后来发现客户那边的网络走的是代理,于是在代码中加下面代码: //设置代理 System.setProperty("http ...

  9. 论super().__init__()的用法

    当我们调用 super() 的时候,实际上是实例化了一个 super 类. super 是个类,既不是关键字也不是函数等其他数据结构,该对象就是专门用来访问父类中的属性的(严格按照继承的关系). -- ...

  10. 针对Fluent-Bit采集容器日志的补充

    hello,之前我写过<一套标准的ASP.NET Core容器化应用日志收集分析方案>,在公司团队.微信公众号.Github上反映良好. 其中配置Fluent-bit使用Forward协议 ...