题目大意

有 \(M\) 个球,一开始每个球均有一个初始标号,标号范围为 \(1\) ~ \(N\) 且为整数,标号为 \(i\) 的球有 \(a_i\) 个,并保证 \(\sum a_i = M\)。

每次操作等概率取出一个球(即取出每个球的概率均为 \(1\over M\)),若这个球标号为 \(k\ (k < N)\),则将它重新标号为 \(k+1\);若这个球标号为 \(N\),则将其重标号为 \(1\)。(取出球后并不将其丢弃)

现在你需要求出,经过 \(K\) 次这样的操作后,每个标号的球的期望个数。

数据范围

\(N ≤ 1000, M ≤ 100,000,000, K ≤ 2,147,483,647\)。

思路

第一次见到循环矩阵优化 dp 的套路,记录一下。

转移方程很好得到,设 \(f[i][j]\) 表示到第 \(i\) 轮 \(j\) 编号的球的期望个数,转移方程就是

\[f[i][j]=\cfrac{m-1}{m}\ f[i-1][j]+\cfrac{1}{m}\ f[i-1][j-1]\ (2\leq j\leq n)
\]
\[f[i][1]=\cfrac{m-1}{m}\ f[i-1][1]+\cfrac{1}{m}\ f[i-1][n]
\]

通过 \(K\) 的范围的提示,我们冲一个矩阵快速幂即可,时间效率 \(O(n^3\log K)\)

\(n\leq 1000\)

那没事了。

假设 \(n=4\),我们构造出转移矩阵:

\[ \left[
\begin{matrix}
f[i-1][1] & f[i-1][2] & f[i-1][3] & f[i-1][4]
\end{matrix}
\right]
\times
\left[
\begin{matrix}
\cfrac{m-1}{m} & \cfrac{1}{m} & 0 & 0 \\
0 & \cfrac{m-1}{m} & \cfrac{1}{m} & 0 \\
0 & 0 & \cfrac{m-1}{m} & \cfrac{1}{m} \\
\cfrac{1}{m} & 0 & 0 & \cfrac{m-1}{m}
\end{matrix}
\right]
=
\left[
\begin{matrix}
f[i][1] & f[i][2] & f[i][3] & f[i][4]
\end{matrix}
\right]
\]

我们发现转移矩阵是一个循环矩阵。

那么这个矩阵满足什么性质呢?

我们设第一排的第 \(i\) 个数为 \(k[i]\),我们以 \(k[1]\) 为例:

\[k[1]=a[1][1]\times a[1][1]+a[1][2]\times a[2][1]+a[1][3]\times a[3][1]+a[1][4]\times a[4][1]
\]

我们将其对应到第一行的元素,得到:

\[k[1]=k[1]\times k[1]+k[2]\times k[4]+k[3]\times k[3]+k[4]\times k[2]
\]

很容易看出性质:

\[k[t]=\sum\limits_{((i+j-2)\ \text{mod}\ n)+1=t}k[i]\times k[j]
\]

所以我们只需要记录第一行的状态,用 \(O(n^2\log K)\)转移即可。

代码

#include <bits/stdc++.h>
using namespace std;
const int maxn=1000+10;
int n,m,K; struct Mat{
double a[maxn];
Mat(){
memset(a,0,sizeof(a));
}
friend inline Mat operator *(register const Mat& A,register const Mat& B){
Mat C;
for(register int i=1;i<=n;i++)
for(register int j=1;j<=n;j++)
C.a[(i+j-2)%n+1]+=A.a[i]*B.a[j];
return C;
}
}ans,base; inline int read(){
int x=0;bool fopt=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar())if(ch=='-')fopt=0;
for(;isdigit(ch);ch=getchar())x=(x<<3)+(x<<1)+ch-48;
return fopt?x:-x;
} inline void qpow(int b){
while(b){
if(b&1)ans=ans*base;
base=base*base;
b>>=1;
}
} int main(){
n=read();m=read();K=read();
for(int i=1;i<=n;i++)
ans.a[i]=read();
base.a[1]=1.0*(m-1)/m;
base.a[2]=1.0/m;
qpow(K);
for(int i=1;i<=n;i++)
printf("%.3lf\n",ans.a[i]);
return 0;
}

【循环矩阵乘优化DP】BZOJ 2510 弱题的更多相关文章

  1. bzoj 2510: 弱题 循环矩阵

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 124  Solved: 61[Submit][Status][Discuss] De ...

  2. BZOJ 2510: 弱题( 矩阵快速幂 )

    每进行一次, 编号为x的数对x, 和(x+1)%N都有贡献 用矩阵快速幂, O(N3logK). 注意到是循环矩阵, 可以把矩阵乘法的复杂度降到O(N2). 所以总复杂度就是O(N2logK) --- ...

  3. [BZOJ 2510]弱题

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 419  Solved: 226[Submit][Status][Discuss] D ...

  4. bzoj 2510: 弱题 概率期望dp+循环矩阵

    题目: Description 有M个球,一开始每个球均有一个初始标号,标号范围为1-N且为整数,标号为i的球有ai个,并保证Σai = M. 每次操作等概率取出一个球(即取出每个球的概率均为1/M) ...

  5. bzoj 2510 弱题 矩阵乘

    看题就像矩阵乘 但是1000的数据无从下手 打表发现每一行的数都是一样的,只不过是错位的,好像叫什么循环矩阵 于是都可以转化为一行的,O(n3)->O(n2)*logk #include< ...

  6. 【BZOJ 2510】 2510: 弱题 (矩阵乘法、循环矩阵的矩阵乘法)

    2510: 弱题 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 374  Solved: 196 Description 有M个球,一开始每个球均有一 ...

  7. CodeForces621E 快速矩阵幂优化dp

    有时些候在用快速矩阵幂优化dp的时候,它的矩阵乘法是不那么容易被具体为题目背景的意思的,大多数时候难以理解矩阵之间相乘的实际意义,正如有时候我们不知道现在在做手头这些事情的意义,但倘若是因一个目标而去 ...

  8. 形态形成场(矩阵乘法优化dp)

    形态形成场(矩阵乘法优化dp) 短信中将会涉及前\(k\)种大写字母,每个大写字母都有一个对应的替换式\(Si\),替换式中只会出现大写字母和数字,比如\(A→BB,B→CC0,C→123\),代表 ...

  9. 斐波那契数列 矩阵乘法优化DP

    斐波那契数列 矩阵乘法优化DP 求\(f(n) \%1000000007​\),\(n\le 10^{18}​\) 矩阵乘法:\(i\times k\)的矩阵\(A\)乘\(k\times j\)的矩 ...

随机推荐

  1. delphi DBgrid应用全书

    在一个Dbgrid中显示多数据库    在数据库编程中,不必要也不可能将应用程序操作的所有数据库字段放入一个数据库文件中.正确的数据库结构应是:将数据库字段放入多个数据库文件,相关的数据库都包含一个唯 ...

  2. Priest John's Busiest Day(POJ 3683)

    原题如下: Priest John's Busiest Day Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 12162   ...

  3. Appium之常用API

    Appium常用API解析 1.current_activity:获取当前页面的activity名,比如com.taobao.tao.TBMainActivity 或 com.taobao.brows ...

  4. linux系统漏洞扫描工具lynis

    lynis 是一款运行在 Unix/Linux 平台上的基于主机的.开源的安全审计软件.Lynis是针对Unix/Linux的安全检查工具,可以发现潜在的安全威胁.这个工具覆盖可疑文件监测.漏洞.恶意 ...

  5. loadrunner跑场景时报错Full MDB file. New error messages will be ignored

    这个原因是在controller跑场景时,controller的日志文件占用内存太大 解决办法:先找到controller的日志文件Results——Results Setting——找到日志的路径, ...

  6. 第1课 - 学习 Lua 的意义

    第1课 - 学习 Lua 的意义 1.Lua 简介 (1) 1993年.巴西 (2) 小巧精致的脚本语言,大小只有 200K (3) 用标准C语言写成,能够在所有的平台上编译运行 (4) 发明的目标是 ...

  7. 对OAuth2.0协议的理解和测试demo

    1. 什么是OAuth OAuth(开放授权)是一个开放标准,允许用户授权第三方网站访问他们存储在另外的服务提供者上的信息,而不需要将用户名和密码提供给第三方网站或分享他们数据的所有内容. OAuth ...

  8. Typora基础使用

    Markdown学习 标题 三级标题 四级标题 字体 Hello,World! Hello,World! Hello,World! Hello,World! 引用 选择狂神说Java,走向人生巅峰 分 ...

  9. python中RGB色彩

    turtle.colormode(mode)来改变色彩数值的使用 如果在修改颜色时写turtle.colormode(1.0) ,就需要使用RGB小数模式来去改变颜色 如果在修改颜色时写turtle. ...

  10. Anaconda简介及特点

    摘要 Python是一种面向对象的解释型计算机程序设计语言,其使用,具有跨平台的特点,可以在Linux.macOS以及Windows系统中搭建环境并使用,其编写的代码在不同平台上运行时,几乎不需要做较 ...