Codeforces Edu Round 66 A-E
A. From Hero to Zero
通过取余快速运行第一步即可。由于\(a \% b (a >= b) <= \frac{a}{2}\)。所以总复杂度不超过\(O(log_2n)\)。
#include <cstdio>
#include <iostream>
using namespace std;
typedef long long LL;
int main(){
int T; scanf("%d", &T);
while(T--){
LL n, k, ans = 0;
scanf("%lld%lld", &n, &k);
while(n){
if(n % k) ans += n % k, n -= n % k;
if(n)n /= k, ans++;
}
printf("%lld\n", ans);
}
return 0;
}
B. Catch Overflow!
循环本质其实是栈的思想,可以用\(loop\)表示这层要循环多少次。注意如果直接乘可能爆\(long\ long\)。
其实当\(loop > 2 ^ {32} - 1\),后面的只要有\(add\)都不行了,所以只要用个\(flag\)记录就行了...
#include <cstdio>
#include <iostream>
#include <string>
#include <stack>
using namespace std;
typedef long long LL;
const LL INF = (1ll << 32) - 1;
LL n = 0, loop = 1;
stack<int> s;
string ch;
int x, flag = 0;
int main(){
ios::sync_with_stdio(false);
int T; cin >> T;
while(T--){
cin >> ch;
if(ch == "add"){
if(loop > INF){
cout << "OVERFLOW!!!" << endl;
return 0;
}
n += loop;
}else if(ch == "for"){
cin >> x;
if(loop > INF) {
flag++;
continue;
}
s.push(x);
loop *= x;
}else if(ch == "end"){
if(flag) {
flag --;
continue;
}
loop /= s.top();
s.pop();
}
if(n > INF){
cout << "OVERFLOW!!!" << endl;
return 0;
}
}
cout << n << endl;
return 0;
}
C. Electrification
注意数据是单调递增的,所以容易想到最短的一段必然是连续的,因为通过绝对值变成正的值顺序一定是\(1, 2, 3....n\),所以每次变成正的后,它可能是最小的,也有可能大于后面的一些,因为减的多了,所以整个区间会往后移动。我们可以尝试枚举每一个\([i, i + k]\)的这个区间,发现能使最小的即变为\((a[i + k] - a[i]) / 2\),也就是全部都减\((a[i + k] - a[i]) / 2\)(可以向下取整)。可以用小根堆维护最小值。由于精度问题,第一个可以不用\(/2\)。
#include <cstdio>
#include <iostream>
#include <cmath>
#include <queue>
#include <vector>
using namespace std;
typedef pair<int, int> PII;
const int N = 200010;
int n, k, a[N];
priority_queue<PII, vector<PII>, greater<PII> > q;
int main(){
int T; scanf("%d", &T);
while(T--){
while(q.size()) q.pop();
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i++)
scanf("%d", a + i);
for(int i = 1; i + k <= n; i++)
q.push(make_pair(a[i + k] - a[i], (a[i] + a[i + k]) / 2));
printf("%d\n", q.top().second);
}
return 0;
}
D. Array Splitting
非常巧妙的做法,观察到让我们求的值其实是每一段的和$ * $ 相应的段数,但其实可以发现,一个\(ans\)的组成为:
\(1 * A + 2 * B + 3 * C = (A + B + C) + (B + C) + C\)。实质上就是找到\(k\)个后缀和,将他们加起来求最大值。这样直接贪心求解即可,记得\([1, n]\)这个区间必须选。
#include <cstdio>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 300010;
typedef long long LL;
int n, k, a[N];
LL ans, sum[N];
int main(){
scanf("%d%d", &n, &k);
for(int i = 1; i <= n; i++)
scanf("%d", a + i);
for(int i = n; i; i--)
sum[i] = sum[i + 1] + a[i];
sort(sum + 2, sum + 1 + n);
ans = sum[1];
for(int i = n; i >= n - k + 2; i--) ans += sum[i];
printf("%lld\n", ans);
return 0;
}
E. Minimal Segment Cover
注意到\(l\)和\(r\)的范围并不大,我们可以预处理出从\(l\)出发最远能到哪里(一条线段),注意\(l\)也可以是中间点。这样我们只需要逐个枚举即可。时间复杂度\(SIZE ^ 2\),可以用倍增的形式优化。具体方式很像\(LCA\),预处理每个\(l\)跳\(2 ^ p(0 <= p <= \lfloor log_2500000 \rfloor)\)能到哪里即可。本质上就是枚举答案的二进制位即可。
时间复杂度\(O(slog_2s)\)(\(s\)是数字范围)
注意预处理顺序,要么\(i\)倒序枚举,要么\(j\)在第一个条件,否则没有正确的转移。
#include <cstdio>
#include <iostream>
#include <cmath>
using namespace std;
const int N = 200010, SIZE = 500010, L = 19;
int n, m, maxS = -1, f[SIZE][L];
int main(){
scanf("%d%d", &n, &m);
for(int i = 1; i <= n; i++){
int l, r; scanf("%d%d", &l, &r);
f[l][0] = max(f[l][0], r);
maxS = max(maxS, r);
}
for(int i = 1; i <= maxS; i++)
f[i][0] = max(f[i][0], f[i - 1][0]);
for(int j = 1; j < L; j++)
for(int i = 0; i <= maxS; i++)
f[i][j] = f[f[i][j - 1]][j - 1];
for(int i = 1; i <= m; i++){
int x, y, ans = 0; scanf("%d%d", &x, &y);
for(int i = L - 1; ~i; i--)
if(f[x][i] < y) x = f[x][i], ans |= 1 << i;
if(f[x][0] >= y) printf("%d\n", ans + 1);
else puts("-1");
}
return 0;
}
Codeforces Edu Round 66 A-E的更多相关文章
- CFEducational Codeforces Round 66题解报告
CFEducational Codeforces Round 66题解报告 感觉丧失了唯一一次能在CF上超过wqy的机会QAQ A 不管 B 不能直接累计乘法打\(tag\),要直接跳 C 考虑二分第 ...
- Educational Codeforces Round 66 差G
Educational Codeforces Round 66 F 题意:长度为 n 的序列,求有多少个区间 \([l,r]\) ,使得其构成了一个 1~r-l+1 的排列. \(n \le 3*10 ...
- Codeforces Beta Round #61 (Div. 2)
Codeforces Beta Round #61 (Div. 2) http://codeforces.com/contest/66 A 输入用long double #include<bit ...
- Codeforces Beta Round #80 (Div. 2 Only)【ABCD】
Codeforces Beta Round #80 (Div. 2 Only) A Blackjack1 题意 一共52张扑克,A代表1或者11,2-10表示自己的数字,其他都表示10 现在你已经有一 ...
- Codeforces Beta Round #62 题解【ABCD】
Codeforces Beta Round #62 A Irrational problem 题意 f(x) = x mod p1 mod p2 mod p3 mod p4 问你[a,b]中有多少个数 ...
- Codeforces Beta Round #83 (Div. 1 Only)题解【ABCD】
Codeforces Beta Round #83 (Div. 1 Only) A. Dorm Water Supply 题意 给你一个n点m边的图,保证每个点的入度和出度最多为1 如果这个点入度为0 ...
- Codeforces Beta Round #13 C. Sequence (DP)
题目大意 给一个数列,长度不超过 5000,每次可以将其中的一个数加 1 或者减 1,问,最少需要多少次操作,才能使得这个数列单调不降 数列中每个数为 -109-109 中的一个数 做法分析 先这样考 ...
- CodeForces Global Round 1
CodeForces Global Round 1 CF新的比赛呢(虽然没啥区别)!这种报名的人多的比赛涨分是真的快.... 所以就写下题解吧. A. Parity 太简单了,随便模拟一下就完了. B ...
- Codeforces Global Round 1 - D. Jongmah(动态规划)
Problem Codeforces Global Round 1 - D. Jongmah Time Limit: 3000 mSec Problem Description Input Out ...
随机推荐
- python之深浅copy与id
我们都知道 所谓变量就是就是在空间中开辟一块内存空间.来存放东西的 学过c语言的都知道而数组也是有内存地址的 我们如何来查看内存地址呢?id()这函数就来了 x = 5 print(id(x)) 如此 ...
- Python_pycharm调试模式+使用pycharm给python传递参数
一.通过pycharm 给python传递函数 1. 在pycharm终端中写入要获取的参数,进行获取 1>启动pycharm 中Terminal(终端) 窗口 点击pycharm左下角的图标, ...
- [原题复现+审计][RoarCTF 2019]Easy Calc(http协议走私、php字符串解析漏洞)
简介 原题复现: 考察知识点:http协议走私.php字符串解析漏洞 线上平台:https://buuoj.cn(北京联合大学公开的CTF平台) 榆林学院内可使用信安协会内部的CTF训练平台找到 ...
- [i春秋]“百度杯”CTF比赛 十月场-Hash
前言 涉及知识点:反序列化.代码执行.命令执行 题目来自:i春秋 hash 如果i春秋题目有问题可以登录榆林学院信息安全协会CTF平台使用 或者利用本文章提供的源码自主复现 [i春秋]"百 ...
- 精尽MyBatis源码分析 - MyBatis 的 SQL 执行过程(一)之 Executor
该系列文档是本人在学习 Mybatis 的源码过程中总结下来的,可能对读者不太友好,请结合我的源码注释(Mybatis源码分析 GitHub 地址.Mybatis-Spring 源码分析 GitHub ...
- 如何利用FL Studio进行音乐合并
FL Studio20是Fruity Loops Studio的简称,也叫做水果音乐制作软件.它是一款功能十分强大的音乐制作软件,将作曲.编曲.混音.录音.大碟等功能集合一体,外接MIDI即可成为一个 ...
- 如何查看CDR文件是出自哪个版本?
如何才能知道某个cdr文件用哪个版本的CorelDRAW软件打开?网上CorelDRAW软件有很多版本,都不知该下哪个了?这是我听到大家问道最多的问题,这是因为CDR低版本软件打不开高版本文件. 方法 ...
- 如何在Visio 中插入各种数学公式?
在Visio 2007老版本中,插入公式可以直接在插入图片中选择,但是在后来的Visio2013中却无法直接通过插入图片的方法插入,那么该如何在visio 2013中插入公式呢? 具体的操作步骤如下: ...
- jquery删除文件
1 <div class="panel panel-default"> 2 <div class="panel-body"> 3 < ...
- day100:MoFang:用户模型类的创建&Marshmallow模块&使用基本构造器Schema完成数据的序列化转换和反序列化转换
目录 1.用户模型的创建 2.Marshmallow模块 3.MarshMallow基本构造器:Schema 1.基于Schema完成数据序列化转换 2.基于Schema完成数据反序列化转换 3.反序 ...