论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
笔记不能简单的抄写文中的内容,得有自己的思考和理解。
一、基本信息
**\1.标题:**Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
**\2.作者:**Kelvin Xu,Jimmy Lei Ba,Ryan Kiros,Kyunghyun Cho,Aaron Courville,Ruslan Salakhutdinov,Richard S. Zemel,Yoshua Bengio
**\3.作者单位:**UC Berkeley,University of Toronto,Google Research,New York University&Facebook AI Research,Université de Montréal,CMU,University of Toronto, University of Montreal
**\4.发表期刊/会议:**ICML
**\5.发表时间:**2015
二、看本篇论文的目的
to study the attention mechanism used in natural image caption algorithm.
三、场景和问题
scene: image caption, natural image, scene understanding
problem: how to train the model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound.
四、研究目标
Models with an attention mechanism can attend to the salient part of an image while generating its caption.
五、主要思路/创新
Main inspiration:
\1.one of the most curious facets of the human cisual system is the presence of attention.
\2.Using representations (such as those from the very top layer of a convnet) that distill information in image down to the most salient objects has one potential drawback of losing informaiton which could be useful for richer, more descriptive captions.
\3.It necessitates a powerful mechanism to steer the model to informaiton important to the task at hand when using lower-level representation.
\4.Recent advances in caption generation and recent successes in employing attention in machine translation and object recognition.
Main innovation:
\1.Two attention mechanism:
a "soft" deterministic attention mechanism trainable by standard back-propagation methods.
a "hard" stochastic attention mechanism trainable by maximizing an approximate variational lower bound or equivalently by REINFORCE.
\2.Show how to gain insight and interpret the results of the framework by visualizing "where" and "what" the attention focused on.

六、算法概述
\1.Encoder:
①.caption y is encoded as a sequence of 1-of-K encoded words:
y={\{\mathtt{y_1,\dots,y_C}\}},\mathtt{y_i}\in\mathbb{R}^K
\]
K is the size of the vocabulary and C is the length of the caption.
②.extractor (a convolutional neural network) produces L vectors, each of which is a D-dimensional representation corresponding to a part of the iamge:
a={\{\mathtt{a_1,\dots,a_L}\}},\mathtt{a_i}\in\mathbb{R}^D
\]
features are extracted from a lower convolutional layer, which allows the decoder to selectively focus on certain parts of an image by weighting a subset of all the feature vectors.
\2.Decoder:
①.LSTM network:
\begin{align*}
& \mathbf{i_t}=\sigma(W_iE\mathbf{y}_{t-1}+U_i\mathbf{h}_{t-1}+Z_i\mathbf{\hat{z}}_t+\mathbf{b}_i)\\
& \mathbf{f_t}=\sigma(W_fE\mathbf{y}_{t-1}+U_f\mathbf{h}_{t-1}+Z_f\mathbf{\hat{z}}_t+\mathbf{b}_f)\\
& \mathbf{c}_t=\mathbf{f}_t\mathbf{c}_{t-1}+\mathbf{i}_t\mathsf{tanh}(W_cE\mathbf{y}_{t-1}+U_c\mathbf{h}_{t-1}+Z_c\mathbf{\hat{z}}_t+\mathbf{b}_c)\\
& \mathbf{o}_t=\sigma(W_oE\mathbf{y}_{t-1}+U_o\mathbf{h}_{t-1}+Z_o\mathbf{\hat{z}}_t+\mathbf{b}_o)\\
&\mathbf{h}_t=\mathbf{o}_t\mathsf{tanh}(\mathbf{c}_t)
\end{align*}
\]
\(\mathbf{i_t,f_t,c_t,o_t,h_t}\) are the input, forget, memory, output and hidden state of the LSTM respectively. \(W_{\bullet},U_{\bullet},Z_{\bullet},\mathbf{b}_{\bullet}\) are learned weight matricies and biases.\(\mathbf{E}\in\mathbb{R}^{m\times K}\) is an embedding matrix. \(m\) and \(n\) denote the embedding and LSTM dimensionality. \(\sigma\) is the logistic sigmoid activation.
②.\(\mathbf{\hat{z}}_t\) is a dynamic representation of the relevant part of the image input at time t.
③.a mechanism \(\phi\) computes \(\mathbf{\hat{z}}_t\) from the annotation vectors \(\mathbf{a}_i,i=1,\dots,L\) corresponding to the features extracted at different image locations.
For each location \(i\), \(\phi\) generates a positive weight \(\alpha_i\) which can be interpreted either as the probability that location \(i\) is the right place to focus for producing the next word (stochastic attention mechanism), or as the relative importance to give to location \(i\) in blending the $ \mathbf_i$'s together (deterministic attention mechanism).
④.weight \(\alpha_i\) of each annotation vector \(a_i\) is computed by an \(attention\,model\,f_{att}\) (a multilayer perceptron conditioned on the previous hidden state \(\mathbf{h}_{t-1}\))
\begin{align*}
&e_{ti}=f_{att}({\mathbf{a}_i},\mathbf{h}_{t-1})\\
&\alpha_{ti}=\frac{exp(e_{ti})}{\sum^L_{k=1}exp(e_{tk})}
\end{align*}
\]
once the wrights (which sum to one) are computed, the context vector \(\hat{z}_t\) is computed by:
\mathbf{\hat{z}_t}=\phi(\{\mathbf{a}_i\},\{\alpha_i\})
\]
⑤.The initial memory state and hidden state of the LSTM:
\mathbf{c}_0=f_{init,c}\left(\frac{1}{L}\sum^L_i\mathbf{a}_i\right),\mathbf{h}_0=f_{init,h}\left({\frac{1}{L}\sum^L_i\mathbf{a}_i}\right)
\]
⑥.a deep output layer computes the output word probability from the image (the context vector), the previously generated word, and the decoder state (\(h_t\)):
p(\mathbf{y}_t|\mathbf{a},\mathbf{y}_1^{t-1})\propto exp(\mathbf{L}_o(\mathbf{Ey_{t-1}}+\mathbf{L}_h\mathbf{h}_t+\mathbf{L}_z\mathbf{\hat{z}}_t))
\]
\(\mathbf{L}_o\in \mathbb{R}^{K\times m},\mathbf{L}_h\in \mathbb{R}^{m\times n},\mathbf{L}_z\in \mathbb{R}^{m\times D}\,and\,\mathbf{E}\) are learned parameters initialized randomly.
七、两种Attention机制实现细节
Stochastic "Hard" Attention:
\1.location variable \(s_{t,i}\), an indicator one-hot variable which is set to 1 if the \(i\)-th location (out of \(L\)) is the one used to extract visual features for generating the \(t\)-th word.
\2.Assign a multinoulli distribution parametrized by \(\{\alpha_i \}\) to treat the attention locations as intermediate latent variables, and \(\mathbf{\hat{z}}_t\) can be viewed as a random variable:
理解:multinoulli distribution explanation
\begin{align*}
&p(s_{t,i}=1|s_{j<t},\mathbf{a})=\alpha_{t,i}\\
&\mathbf{\hat{z}}_t=\sum_is_{t,i}\mathbf{a}_i
\end{align*}
\]
\3.a new objective function \(L_s\):
\begin{align*}
L_s & =\sum_s\,p(s|\mathbf{a})\mathsf{log}\, p(\mathbf{y}|s,\mathbf{a})\\
&\leq \mathsf{log\sum_s}\, p(s|\mathbf{a})p(\mathbf{y}|s,\mathbf{a})\\
&=\mathsf{log}\,p(\mathbf{y}|\mathbf{a})
\end{align*}
\]
\(\mathbf{y}\) the sequence of words, \(\mathbf{a}\) the given image features, So parameters \(W\) of the models can be derived by directly optimizing.
\4.\(L_s\)'s gradient:
\frac{\partial L_s}{\partial W}=\sum_s\,p(s|\mathbf{a})\left[\frac{\partial\,\mathsf{log}\,p(\mathbf{y}|s,\mathbf{a})}{\partial W}+\mathsf{log}\,p(\mathbf{y}|s,\mathbf{a})\frac{\partial\,\mathsf{log}\,p(s|\mathbf{a})}{\partial W}\right]
\]
the gradient of \(L_s\) is approximated by a Monte Carlo method:
\frac{\partial L_s}{\partial W}\approx \frac{1}{N}\sum_s^N\left[\frac{\partial\,\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})}{\partial W}+\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})\frac{\partial\,\mathsf{log}\,p(\tilde{s}^n|\mathbf{a})}{\partial W}\right]\\
\tilde{s}^n_t \sim \mathbf{Multinoulli}(\{\ \alpha_i^n \})
\]
\(\tilde{s}^n=(s^n_1,s^n_2,\dots)\) is a sequence of sampled attention locations from a multinouilli distribution.
\5.Moving average baseline technique -- to reduce the variance of the estimator:
b_k = 0.9\times b_{k-1} + 0.1\times \mathsf{log}\,p(\mathbf{y}|\tilde{s}_k,\mathbf{a})
\]
to further reduce the estimator variance, the gradient of the entropy \(H[s]\) of the multinouilli distribution is added to the RHS of Eq.(7), final learning rule for the model:
\begin{align*}
\frac{\partial L_s}{\partial W}&\approx \frac{1}{N}\sum_{n=1}^N\left[\frac{\partial\,\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})}{\partial W}+\\
\lambda_r(\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})-b)\frac{\partial\,\mathsf{log}\,p(\tilde{s}^n|\mathbf{a})}{\partial W}+\lambda_e\frac{\partial H[\tilde{s}^n]}{\partial W}\right]
\end{align*}
\]
\(\lambda_r\) and \(\lambda_e\) are two hyper-parameters set by cross-validation.
\6.to further improve the robustness fo the learning rule, with probability 0.5 for a given image, the sampled attention location \(\tilde{s}\) is set to its expected value \(\alpha\) (equivalent to the deterministic attention).
the formulation is equivalent to the \(\mathbf{RENIFORCE}\) learning rule, where the reward for the attention choosing a sequence of actions is a real value proportional to the log likelihood of the target sentence under the sampled attention trajectory.
Deterministic "Soft" Attention:
\1.Instead of sampling the attention location \(s_t\) each time, it just take the expectation of the context vector \(\hat{z}_t\) directly:
\mathbb{E}_{p(s_t|a)}[\mathbf{\hat{z}}_t]=\sum_{i=1}^L\, \alpha_{t,i}\mathbf{a}_i
\]
the soft attention weighted annotation vector is computed by : \(\phi(\{\mathbf{a_i}\},\{\alpha_i\})=\sum^L_i\alpha_i\mathbf{a}_i\), which corresponds to feeding in a soft \(\alpha\) weighted context into the system.
\2.\(\mathbf{n}_{t,i}\) is denoted as \(\mathbf{n}\) in Eq.(2) with \(\mathbf{\hat{z}}_t\) set to \(\mathbf{a}_i\). The normalized weighted geometric mean (NWGM) of the softmax of \(k\)-th word prediction:
\begin{align*}
\mathbf{NWGM}[p(y_t=k|\mathbf{a})]&=\frac{\prod_i\mathsf{exp}(n_{t,k,i})^{p(s_{t,i}=1|a)}}{\sum_j\prod_i\mathsf{exp}(n_{t,j,i})^{p(s_{t,i} = 1|a)}}\\
&=\frac{\mathsf{exp}(\mathbb{E}_{p(s_t|a)}[n_{t,k}])}{\sum_j\mathsf{exp}(\mathbb{E_{p(s_t|a)}}[n_{t,j}])}
\end{align*}
\]
This implies that the NWGM of the word prediction can be well approximated by using the expected context vector \(\mathbb{E}[\mathbf{\hat{z}}_t]\), instead of the sampled context vector \(\mathbf{a}_i\). Furthermore, the \(\mathbf{NWGM}\) can be computed by a single feedforward computation approximates the expection \(\mathbb{E}[p(y_t=k|\mathbf{a})]\) of the output over all possible attention locations induced by random variable \(s_t\).
Suggesting that the proposed deterministic attention model approximately maximizes the marginal likelihood over all possible attention locations.
\3.①.In training the deterministic model, a doubly stochastic regularization encourages the model to pay equal attention to every part of the image.
The attention \(\sum_i\alpha_{ti} = 1\) makes it possible for the decoder to ignore some parts of the input image, and encourage \(\sum_t\alpha_{ti}\approx \tau,\tau \ge \frac{L}{D}\). This penalty quantitatively improves overall performance and it qualitatively leads to more descriptive captions.
②.the soft attention model predicts a gating scalar \(\beta\) from previous hidden state \(\mathbf{h}_{t-1}\) at each time step t, such that, \(\phi(\{\mathbf{a_i}\},\{\alpha_i\})=\beta\sum_i^L\alpha_i\mathbf{a}_i\), \(\beta_t=\sigma(f_{\beta}(\mathbf{h}_{t-1}))\). This gating variable lets the decoder decide whether to put more emphasis on language modeling or on the context at each time step.
③.The soft attention model is trained end-to-end by minimizing the penalized negative log-likelihood:
L_d=-log(p(\mathbf{y}|\mathbf{a}))+\lambda\sum_i^L(1-\sum^C_t\alpha_{ti})^2
\]
\(\tau\) is simply fixed to 1.
八、采用的数据集&评价指标
Datasets:
Flickr8k, Flickr30k,(each image has 5 reference captions),MS COCO(discarding caption in excess of 5 to maintain a same number of references between the datasets).
Metrics:
BLEU (from 1 to 4 without a brevity penalty), METEOR (because of the criticism of BLEU)

九、实验细节
Training Details:
\1.Both model were trained with stochastic gradient descent using adaptive learning rates. Flickr8k dataset--RMSProp works best, Flickr30k/MSCOCO dataset--Adam algorithm is quite effective.
\2.the encoder (creates the annotations \(a_i\)) -- the Oxford VGGnet pretrained on ImageNet without finetuning, and just use the $14\times14\times512$ feature map of the fourth convolutional layer before max pooling to create the flattened $196\times512$ encoding to the decoder. In addition, with enough data, the encoder could also be trained from scratch (or fine-tune) with the rest of the model.
\3.problem: the implementation requires time proportional to the length of the longest sentence per update, and training on a random group of captions is computationally wasteful.
solution: In preprocessing, building a dictionary to map the length of a sentence to the corresponding subset of captions. During training, randomly sampling a length and retrieve a mini-batch of size 64 of that length.
performance: greatly improved convergence speed with no noticeable diminishment, on the largest dataset(MS COCO) it takes less than 3 days training on an NVIDIA Titan Black GPU.
\4.regularization strategy: dropout, early stopping on BLEU score (it observed a breakdown in correlation between the validation set log-likelihood and BLEU in the later stages of training during the experiments.)
十、验证的问题&效果
Question 1:
single model versus ensemble comparison:
in the results, it just report a single mdel performance.
Question 2:
differences between dataset splits:
Flickr8k -- predefined splits
Flickr30k and COCO -- lack of standardized splits, reported with publicly available splits used in previous work
however, the differences in splits do not make a substantial difference in overall performance.
Question 3:
quantitative effectiveness of attention:
①.obtain state of the art performance on the Flickr8k, Flickr30k and MS COCO.
②.significantly improve the state-of-the-art performance METEOR on MS COCO.
③.it speculates that the improvement connected to some of the regularization techniques and the lower-level representation.
Question 4:
visualizing the attention learned by the model:
add an extra layer of interpretability to the output of the model.
①.the only time the feature maps decrease in size are due to the max pooling layers, because the 19-layer OxfordNet uses stacks of 3x3 filters.
②.The input image is resized so that the shortest side is 256-dimensional with preserved aspect ratio, and input the center-cropped 224x224 image to the convolutional network, then with four max pooling layers, it gets an output dimension of the top convolutional layer of 14x14.
③.upsample the weights by a factor of $2^4=16$ and apply a Gaussian filter to emulate the large receptive field size to visulize the attention weights for the soft model.


论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结的更多相关文章
- 论文笔记:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention 2018-08-10 10:15:06 Pap ...
- [Paper Reading] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
论文链接:https://arxiv.org/pdf/1502.03044.pdf 代码链接:https://github.com/kelvinxu/arctic-captions & htt ...
- Paper Reading - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ( ICML 2015 )
Link of the Paper: https://arxiv.org/pdf/1502.03044.pdf Main Points: Encoder-Decoder Framework: Enco ...
- 论文:Show and Tell: A Neural Image Caption Generator-阅读总结
Show and Tell: A Neural Image Caption Generator-阅读总结 笔记不能简单的抄写文中的内容,得有自己的思考和理解. 一.基本信息 标题 作者 作者单位 发表 ...
- Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...
- 论文解读《Bilinear Graph Neural Network with Neighbor Interactions》
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiang ...
- 从Image Caption Generation理解深度学习
0. 前面的话 建丁让我写一篇深度学习相关小文章,目标读者是国内的开发者.刚接到这个任务时我是颇为忐忑的,写文章要讲究厚积薄发,如果“水之积也不厚”,“则其负大舟也无力”.因为我自知水平很有限,又不是 ...
- 论文笔记之: Recurrent Models of Visual Attention
Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也 ...
- Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )
Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...
随机推荐
- Caused by: org.postgresql.util.PSQLException: 错误: 语法错误 在 "desc" 、语法错误 在 "from" 附近
此错误一般是由于postgres的数据库表字段名定义与关键字重名所致: 如下,创建的数据库表包含名称为“desc”的字段与倒叙查询的desc关键字冲突会导致Caused by: org.postgre ...
- 面试中的老大难-mysql事务和锁,一次性讲清楚!
众所周知,事务和锁是mysql中非常重要功能,同时也是面试的重点和难点.本文会详细介绍事务和锁的相关概念及其实现原理,相信大家看完之后,一定会对事务和锁有更加深入的理解. 本文主要内容是根据掘金小册& ...
- 单元测试报错:Mybatis中数据库语句错误
org.mybatis.spring.MyBatisSystemException: nested exception is org.apache.ibatis.exceptions.Persiste ...
- CSS动画实例:Loading加载动画效果(一)
一些网站或者APP在加载新东西的时候,往往会给出一个好看有趣的Loading图,大部分的Loading样式都可以使用CSS3制作出来,它不仅比直接使用gif图简单方便,还能节省加载时间和空间.下面介绍 ...
- importTSV工具导入数据到hbase
1.建立目标表test,确定好列族信息. create'test','info','address' 2.建立文件编写要导入的数据并上传到hdfs上 touch a.csv vi a.csv 数据内容 ...
- Android 获取对象列表中的某一列 / 所有对象的某一字段,Realm数据库可获取某一字段所有值
现在项目用的数据库是Realm,所以想要获取数据库中某一字段的数据没有一句直接的语句进行获取,就像MySQL一样的select name from User,从User表里获取所有的name. 所以只 ...
- Word操作之参考文献自动关联和引用
转载:https://blog.csdn.net/qq_40078121/article/details/88681605 编号选项->定义新编号格式: 选择插入->交叉引用选项: 然后选 ...
- 6套MSP430开发板资料共享 | 免费下载
目录 1-MSP430 开发板I 2-MSP430mini板资料 3-MSP430F149开发板资料 4-KB-1B光盘资料 5-LT-1B型MSP430学习板光盘 6-MSP-EXP430F552 ...
- 【趣味设计模式系列】之【代理模式3--Cglib动态代理源码解析】
1. 图解 上图主要描述了Cglib动态代理的主要执行过程,下面做详细分析,以下源码使用的Cglib版本为3.2.12. 2. Enhancer源码分析 public Object create() ...
- 【Android】时间选择器,选择日期DatePicker 简单详解demo及教程
作者:程序员小冰,GitHub主页:https://github.com/QQ986945193 新浪微博:http://weibo.com/mcxiaobing 首先给大家看一下我们今天这个最终实现 ...