论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结
笔记不能简单的抄写文中的内容,得有自己的思考和理解。
一、基本信息
**\1.标题:**Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
**\2.作者:**Kelvin Xu,Jimmy Lei Ba,Ryan Kiros,Kyunghyun Cho,Aaron Courville,Ruslan Salakhutdinov,Richard S. Zemel,Yoshua Bengio
**\3.作者单位:**UC Berkeley,University of Toronto,Google Research,New York University&Facebook AI Research,Université de Montréal,CMU,University of Toronto, University of Montreal
**\4.发表期刊/会议:**ICML
**\5.发表时间:**2015
二、看本篇论文的目的
to study the attention mechanism used in natural image caption algorithm.
三、场景和问题
scene: image caption, natural image, scene understanding
problem: how to train the model in a deterministic manner using standard backpropagation techniques and stochastically by maximizing a variational lower bound.
四、研究目标
Models with an attention mechanism can attend to the salient part of an image while generating its caption.
五、主要思路/创新
Main inspiration:
\1.one of the most curious facets of the human cisual system is the presence of attention.
\2.Using representations (such as those from the very top layer of a convnet) that distill information in image down to the most salient objects has one potential drawback of losing informaiton which could be useful for richer, more descriptive captions.
\3.It necessitates a powerful mechanism to steer the model to informaiton important to the task at hand when using lower-level representation.
\4.Recent advances in caption generation and recent successes in employing attention in machine translation and object recognition.
Main innovation:
\1.Two attention mechanism:
a "soft" deterministic attention mechanism trainable by standard back-propagation methods.
a "hard" stochastic attention mechanism trainable by maximizing an approximate variational lower bound or equivalently by REINFORCE.
\2.Show how to gain insight and interpret the results of the framework by visualizing "where" and "what" the attention focused on.

六、算法概述
\1.Encoder:
①.caption y is encoded as a sequence of 1-of-K encoded words:
y={\{\mathtt{y_1,\dots,y_C}\}},\mathtt{y_i}\in\mathbb{R}^K
\]
K is the size of the vocabulary and C is the length of the caption.
②.extractor (a convolutional neural network) produces L vectors, each of which is a D-dimensional representation corresponding to a part of the iamge:
a={\{\mathtt{a_1,\dots,a_L}\}},\mathtt{a_i}\in\mathbb{R}^D
\]
features are extracted from a lower convolutional layer, which allows the decoder to selectively focus on certain parts of an image by weighting a subset of all the feature vectors.
\2.Decoder:
①.LSTM network:
\begin{align*}
& \mathbf{i_t}=\sigma(W_iE\mathbf{y}_{t-1}+U_i\mathbf{h}_{t-1}+Z_i\mathbf{\hat{z}}_t+\mathbf{b}_i)\\
& \mathbf{f_t}=\sigma(W_fE\mathbf{y}_{t-1}+U_f\mathbf{h}_{t-1}+Z_f\mathbf{\hat{z}}_t+\mathbf{b}_f)\\
& \mathbf{c}_t=\mathbf{f}_t\mathbf{c}_{t-1}+\mathbf{i}_t\mathsf{tanh}(W_cE\mathbf{y}_{t-1}+U_c\mathbf{h}_{t-1}+Z_c\mathbf{\hat{z}}_t+\mathbf{b}_c)\\
& \mathbf{o}_t=\sigma(W_oE\mathbf{y}_{t-1}+U_o\mathbf{h}_{t-1}+Z_o\mathbf{\hat{z}}_t+\mathbf{b}_o)\\
&\mathbf{h}_t=\mathbf{o}_t\mathsf{tanh}(\mathbf{c}_t)
\end{align*}
\]
\(\mathbf{i_t,f_t,c_t,o_t,h_t}\) are the input, forget, memory, output and hidden state of the LSTM respectively. \(W_{\bullet},U_{\bullet},Z_{\bullet},\mathbf{b}_{\bullet}\) are learned weight matricies and biases.\(\mathbf{E}\in\mathbb{R}^{m\times K}\) is an embedding matrix. \(m\) and \(n\) denote the embedding and LSTM dimensionality. \(\sigma\) is the logistic sigmoid activation.
②.\(\mathbf{\hat{z}}_t\) is a dynamic representation of the relevant part of the image input at time t.
③.a mechanism \(\phi\) computes \(\mathbf{\hat{z}}_t\) from the annotation vectors \(\mathbf{a}_i,i=1,\dots,L\) corresponding to the features extracted at different image locations.
For each location \(i\), \(\phi\) generates a positive weight \(\alpha_i\) which can be interpreted either as the probability that location \(i\) is the right place to focus for producing the next word (stochastic attention mechanism), or as the relative importance to give to location \(i\) in blending the $ \mathbf_i$'s together (deterministic attention mechanism).
④.weight \(\alpha_i\) of each annotation vector \(a_i\) is computed by an \(attention\,model\,f_{att}\) (a multilayer perceptron conditioned on the previous hidden state \(\mathbf{h}_{t-1}\))
\begin{align*}
&e_{ti}=f_{att}({\mathbf{a}_i},\mathbf{h}_{t-1})\\
&\alpha_{ti}=\frac{exp(e_{ti})}{\sum^L_{k=1}exp(e_{tk})}
\end{align*}
\]
once the wrights (which sum to one) are computed, the context vector \(\hat{z}_t\) is computed by:
\mathbf{\hat{z}_t}=\phi(\{\mathbf{a}_i\},\{\alpha_i\})
\]
⑤.The initial memory state and hidden state of the LSTM:
\mathbf{c}_0=f_{init,c}\left(\frac{1}{L}\sum^L_i\mathbf{a}_i\right),\mathbf{h}_0=f_{init,h}\left({\frac{1}{L}\sum^L_i\mathbf{a}_i}\right)
\]
⑥.a deep output layer computes the output word probability from the image (the context vector), the previously generated word, and the decoder state (\(h_t\)):
p(\mathbf{y}_t|\mathbf{a},\mathbf{y}_1^{t-1})\propto exp(\mathbf{L}_o(\mathbf{Ey_{t-1}}+\mathbf{L}_h\mathbf{h}_t+\mathbf{L}_z\mathbf{\hat{z}}_t))
\]
\(\mathbf{L}_o\in \mathbb{R}^{K\times m},\mathbf{L}_h\in \mathbb{R}^{m\times n},\mathbf{L}_z\in \mathbb{R}^{m\times D}\,and\,\mathbf{E}\) are learned parameters initialized randomly.
七、两种Attention机制实现细节
Stochastic "Hard" Attention:
\1.location variable \(s_{t,i}\), an indicator one-hot variable which is set to 1 if the \(i\)-th location (out of \(L\)) is the one used to extract visual features for generating the \(t\)-th word.
\2.Assign a multinoulli distribution parametrized by \(\{\alpha_i \}\) to treat the attention locations as intermediate latent variables, and \(\mathbf{\hat{z}}_t\) can be viewed as a random variable:
理解:multinoulli distribution explanation
\begin{align*}
&p(s_{t,i}=1|s_{j<t},\mathbf{a})=\alpha_{t,i}\\
&\mathbf{\hat{z}}_t=\sum_is_{t,i}\mathbf{a}_i
\end{align*}
\]
\3.a new objective function \(L_s\):
\begin{align*}
L_s & =\sum_s\,p(s|\mathbf{a})\mathsf{log}\, p(\mathbf{y}|s,\mathbf{a})\\
&\leq \mathsf{log\sum_s}\, p(s|\mathbf{a})p(\mathbf{y}|s,\mathbf{a})\\
&=\mathsf{log}\,p(\mathbf{y}|\mathbf{a})
\end{align*}
\]
\(\mathbf{y}\) the sequence of words, \(\mathbf{a}\) the given image features, So parameters \(W\) of the models can be derived by directly optimizing.
\4.\(L_s\)'s gradient:
\frac{\partial L_s}{\partial W}=\sum_s\,p(s|\mathbf{a})\left[\frac{\partial\,\mathsf{log}\,p(\mathbf{y}|s,\mathbf{a})}{\partial W}+\mathsf{log}\,p(\mathbf{y}|s,\mathbf{a})\frac{\partial\,\mathsf{log}\,p(s|\mathbf{a})}{\partial W}\right]
\]
the gradient of \(L_s\) is approximated by a Monte Carlo method:
\frac{\partial L_s}{\partial W}\approx \frac{1}{N}\sum_s^N\left[\frac{\partial\,\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})}{\partial W}+\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})\frac{\partial\,\mathsf{log}\,p(\tilde{s}^n|\mathbf{a})}{\partial W}\right]\\
\tilde{s}^n_t \sim \mathbf{Multinoulli}(\{\ \alpha_i^n \})
\]
\(\tilde{s}^n=(s^n_1,s^n_2,\dots)\) is a sequence of sampled attention locations from a multinouilli distribution.
\5.Moving average baseline technique -- to reduce the variance of the estimator:
b_k = 0.9\times b_{k-1} + 0.1\times \mathsf{log}\,p(\mathbf{y}|\tilde{s}_k,\mathbf{a})
\]
to further reduce the estimator variance, the gradient of the entropy \(H[s]\) of the multinouilli distribution is added to the RHS of Eq.(7), final learning rule for the model:
\begin{align*}
\frac{\partial L_s}{\partial W}&\approx \frac{1}{N}\sum_{n=1}^N\left[\frac{\partial\,\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})}{\partial W}+\\
\lambda_r(\mathsf{log}\,p(\mathbf{y}|\tilde{s}^n,\mathbf{a})-b)\frac{\partial\,\mathsf{log}\,p(\tilde{s}^n|\mathbf{a})}{\partial W}+\lambda_e\frac{\partial H[\tilde{s}^n]}{\partial W}\right]
\end{align*}
\]
\(\lambda_r\) and \(\lambda_e\) are two hyper-parameters set by cross-validation.
\6.to further improve the robustness fo the learning rule, with probability 0.5 for a given image, the sampled attention location \(\tilde{s}\) is set to its expected value \(\alpha\) (equivalent to the deterministic attention).
the formulation is equivalent to the \(\mathbf{RENIFORCE}\) learning rule, where the reward for the attention choosing a sequence of actions is a real value proportional to the log likelihood of the target sentence under the sampled attention trajectory.
Deterministic "Soft" Attention:
\1.Instead of sampling the attention location \(s_t\) each time, it just take the expectation of the context vector \(\hat{z}_t\) directly:
\mathbb{E}_{p(s_t|a)}[\mathbf{\hat{z}}_t]=\sum_{i=1}^L\, \alpha_{t,i}\mathbf{a}_i
\]
the soft attention weighted annotation vector is computed by : \(\phi(\{\mathbf{a_i}\},\{\alpha_i\})=\sum^L_i\alpha_i\mathbf{a}_i\), which corresponds to feeding in a soft \(\alpha\) weighted context into the system.
\2.\(\mathbf{n}_{t,i}\) is denoted as \(\mathbf{n}\) in Eq.(2) with \(\mathbf{\hat{z}}_t\) set to \(\mathbf{a}_i\). The normalized weighted geometric mean (NWGM) of the softmax of \(k\)-th word prediction:
\begin{align*}
\mathbf{NWGM}[p(y_t=k|\mathbf{a})]&=\frac{\prod_i\mathsf{exp}(n_{t,k,i})^{p(s_{t,i}=1|a)}}{\sum_j\prod_i\mathsf{exp}(n_{t,j,i})^{p(s_{t,i} = 1|a)}}\\
&=\frac{\mathsf{exp}(\mathbb{E}_{p(s_t|a)}[n_{t,k}])}{\sum_j\mathsf{exp}(\mathbb{E_{p(s_t|a)}}[n_{t,j}])}
\end{align*}
\]
This implies that the NWGM of the word prediction can be well approximated by using the expected context vector \(\mathbb{E}[\mathbf{\hat{z}}_t]\), instead of the sampled context vector \(\mathbf{a}_i\). Furthermore, the \(\mathbf{NWGM}\) can be computed by a single feedforward computation approximates the expection \(\mathbb{E}[p(y_t=k|\mathbf{a})]\) of the output over all possible attention locations induced by random variable \(s_t\).
Suggesting that the proposed deterministic attention model approximately maximizes the marginal likelihood over all possible attention locations.
\3.①.In training the deterministic model, a doubly stochastic regularization encourages the model to pay equal attention to every part of the image.
The attention \(\sum_i\alpha_{ti} = 1\) makes it possible for the decoder to ignore some parts of the input image, and encourage \(\sum_t\alpha_{ti}\approx \tau,\tau \ge \frac{L}{D}\). This penalty quantitatively improves overall performance and it qualitatively leads to more descriptive captions.
②.the soft attention model predicts a gating scalar \(\beta\) from previous hidden state \(\mathbf{h}_{t-1}\) at each time step t, such that, \(\phi(\{\mathbf{a_i}\},\{\alpha_i\})=\beta\sum_i^L\alpha_i\mathbf{a}_i\), \(\beta_t=\sigma(f_{\beta}(\mathbf{h}_{t-1}))\). This gating variable lets the decoder decide whether to put more emphasis on language modeling or on the context at each time step.
③.The soft attention model is trained end-to-end by minimizing the penalized negative log-likelihood:
L_d=-log(p(\mathbf{y}|\mathbf{a}))+\lambda\sum_i^L(1-\sum^C_t\alpha_{ti})^2
\]
\(\tau\) is simply fixed to 1.
八、采用的数据集&评价指标
Datasets:
Flickr8k, Flickr30k,(each image has 5 reference captions),MS COCO(discarding caption in excess of 5 to maintain a same number of references between the datasets).
Metrics:
BLEU (from 1 to 4 without a brevity penalty), METEOR (because of the criticism of BLEU)

九、实验细节
Training Details:
\1.Both model were trained with stochastic gradient descent using adaptive learning rates. Flickr8k dataset--RMSProp works best, Flickr30k/MSCOCO dataset--Adam algorithm is quite effective.
\2.the encoder (creates the annotations \(a_i\)) -- the Oxford VGGnet pretrained on ImageNet without finetuning, and just use the $14\times14\times512$ feature map of the fourth convolutional layer before max pooling to create the flattened $196\times512$ encoding to the decoder. In addition, with enough data, the encoder could also be trained from scratch (or fine-tune) with the rest of the model.
\3.problem: the implementation requires time proportional to the length of the longest sentence per update, and training on a random group of captions is computationally wasteful.
solution: In preprocessing, building a dictionary to map the length of a sentence to the corresponding subset of captions. During training, randomly sampling a length and retrieve a mini-batch of size 64 of that length.
performance: greatly improved convergence speed with no noticeable diminishment, on the largest dataset(MS COCO) it takes less than 3 days training on an NVIDIA Titan Black GPU.
\4.regularization strategy: dropout, early stopping on BLEU score (it observed a breakdown in correlation between the validation set log-likelihood and BLEU in the later stages of training during the experiments.)
十、验证的问题&效果
Question 1:
single model versus ensemble comparison:
in the results, it just report a single mdel performance.
Question 2:
differences between dataset splits:
Flickr8k -- predefined splits
Flickr30k and COCO -- lack of standardized splits, reported with publicly available splits used in previous work
however, the differences in splits do not make a substantial difference in overall performance.
Question 3:
quantitative effectiveness of attention:
①.obtain state of the art performance on the Flickr8k, Flickr30k and MS COCO.
②.significantly improve the state-of-the-art performance METEOR on MS COCO.
③.it speculates that the improvement connected to some of the regularization techniques and the lower-level representation.
Question 4:
visualizing the attention learned by the model:
add an extra layer of interpretability to the output of the model.
①.the only time the feature maps decrease in size are due to the max pooling layers, because the 19-layer OxfordNet uses stacks of 3x3 filters.
②.The input image is resized so that the shortest side is 256-dimensional with preserved aspect ratio, and input the center-cropped 224x224 image to the convolutional network, then with four max pooling layers, it gets an output dimension of the top convolutional layer of 14x14.
③.upsample the weights by a factor of $2^4=16$ and apply a Gaussian filter to emulate the large receptive field size to visulize the attention weights for the soft model.


论文:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention-阅读总结的更多相关文章
- 论文笔记:Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
Show, Attend and Tell: Neural Image Caption Generation with Visual Attention 2018-08-10 10:15:06 Pap ...
- [Paper Reading] Show, Attend and Tell: Neural Image Caption Generation with Visual Attention
论文链接:https://arxiv.org/pdf/1502.03044.pdf 代码链接:https://github.com/kelvinxu/arctic-captions & htt ...
- Paper Reading - Show, Attend and Tell: Neural Image Caption Generation with Visual Attention ( ICML 2015 )
Link of the Paper: https://arxiv.org/pdf/1502.03044.pdf Main Points: Encoder-Decoder Framework: Enco ...
- 论文:Show and Tell: A Neural Image Caption Generator-阅读总结
Show and Tell: A Neural Image Caption Generator-阅读总结 笔记不能简单的抄写文中的内容,得有自己的思考和理解. 一.基本信息 标题 作者 作者单位 发表 ...
- Paper Reading - Show and Tell: A Neural Image Caption Generator ( CVPR 2015 )
Link of the Paper: https://arxiv.org/abs/1411.4555 Main Points: A generative model ( NIC, GoogLeNet ...
- 论文解读《Bilinear Graph Neural Network with Neighbor Interactions》
论文信息 论文标题:Bilinear Graph Neural Network with Neighbor Interactions论文作者:Hongmin Zhu, Fuli Feng, Xiang ...
- 从Image Caption Generation理解深度学习
0. 前面的话 建丁让我写一篇深度学习相关小文章,目标读者是国内的开发者.刚接到这个任务时我是颇为忐忑的,写文章要讲究厚积薄发,如果“水之积也不厚”,“则其负大舟也无力”.因为我自知水平很有限,又不是 ...
- 论文笔记之: Recurrent Models of Visual Attention
Recurrent Models of Visual Attention Google DeepMind 模拟人类看东西的方式,我们并非将目光放在整张图像上,尽管有时候会从总体上对目标进行把握,但是也 ...
- Paper Reading - Mind’s Eye: A Recurrent Visual Representation for Image Caption Generation ( CVPR 2015 )
Link of the Paper: https://ieeexplore.ieee.org/document/7298856/ A Correlative Paper: Learning a Rec ...
随机推荐
- LeetCode 413 Arithmetic Slices详解
这个开始自己做的动态规划复杂度达到了O(n), 是用的是2维的矩阵来存前面的数据,复杂度太高了, 虽然好理解,但是没效率,后面看这个博客发现没有动态规划做了这个题 也是比较厉害. 转载地址: http ...
- golang的fmt
前言 不做文字搬运工,多做思路整理 就是为了能速览标准库,只整理我自己看过的...... 注意!!!!!!!!!! 单词都是连着的,我是为了看着方便.理解方便才分开的 1.fmt 中文文档 [英文文档 ...
- springboot中RedisTemplate的使用
springboot中RedisTemplate的使用 参考 了解 Redis 并在 Spring Boot 项目中使用 Redis--以IBM为学习模板 springboot之使用redistemp ...
- sql server 查询表字段的说明备注信息
SELECT 表名 = case when a.colorder= then d.name else '' end, 表说明 = case when a.colorder= then isnull(f ...
- Caused by: java.lang.NullPointerException: Attempt to invoke virtual method 'java.util.List com.catherine.forrealm.about_utils.RealmHelper.findAllStudent()' on a null object reference
报错: 解决方法: private RealmHelper realm_search = new RealmHelper(); 进而发现在写RecyclerView时,遗漏如下代码: recy_sea ...
- Spring Security认证流程分析--练气后期
写在前面 在前一篇文章中,我们介绍了如何配置spring security的自定义认证页面,以及前后端分离场景下如何获取spring security的CSRF Token.在这一篇文章中我们将来分析 ...
- 基于 abp vNext 微服务开发的敏捷应用构建平台 - 项目介绍
缘起 目前使用ABP框架已经将近3年了,大大小小的项目也陆陆续续做了很多.由于现有信息系统的架构模式是在底层的技术平台上直接构建信息系统并采用技术主导,使用业务无关的编程工具来开发信息系统的缺陷使得系 ...
- springboot整合druid监控配置
方式一:直接引入druid 1.maven坐标 <dependency> <groupId>com.alibaba</groupId> <artifactId ...
- 四则运算(C语言实现)
四则运算(c语言实现) 合伙人:魏甫——3118004973 ,温钦益——3118004975 https://github.com/iamdate/work/tree/master 一.项目及其要 ...
- Java数据结构——2-3树
定义2-3树是平衡的3路查找树,其中2(2-node)是指拥有两个分支的节点,3(3-node)是指拥有三个分支的节点.B-树是一种平衡的多路查找树,2-3树属于b-树,其也同样具有B-树的性质,如m ...