SPOJ - LCS2 Longest Common Substring II(后缀自动机)题解
题意:
求\(n\)个串的最大\(LCS\)。
思路:
把第一个串建后缀自动机,然后枚举所有串。对于每个串,求出这个串在\(i\)节点的最大匹配为\(temp[i]\)(当前串在这个节点最多取多少),然后我们求出最终所有串在\(i\)节点的匹配最小值\(mn[i]\)(即为所有串在\(i\)节点都能取到多少),答案即为\(max\{min[i]\}\)。
但是我们能发现,如果我们更新了\(temp[i]\),那么其实\(fa[i]\)的\(temp[fa[i]]\)也应该要更新,因为父节点是我的后缀子串,只是我没有走过去而已,并且\(temp[fa[i]] = max(temp[fa[i]], \ max(temp[i],\ mxlen[fa[i]]))\),因为父节点的匹配长度不能超过他本身长度。
为了能线性实现如上操作,我们按照\(mxlen\)大小桶排,因为父节点的\(mxlen\)一定小于子节点,那么我直接倒着更新就能保证我更新父节点时自己一定已经更新过了。
黄某讲的挺好,点击前往
代码:
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<bitset>
#include<string>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 10;
typedef long long ll;
const ll MOD = 1e9 + 7;
int x[maxn << 1], rk[maxn << 1];
//桶排,按照len从小到大排序节点
struct SAM{
int node[maxn << 1][26], fa[maxn << 1], mxlen[maxn << 1];
int mn[maxn << 1];
int sz, last;
int newnode(){
++sz;
memset(node[sz], 0, sizeof(node[sz]));
fa[sz] = mxlen[sz] = 0;
return sz;
}
void init(){
sz = 0;
last = newnode();
}
void insert(int k){
int p = last, np = last = newnode();
mxlen[np] = mxlen[p] + 1;
for(; p && !node[p][k]; p = fa[p])
node[p][k] = np;
if(p == 0){
fa[np] = 1;
}
else{
int t = node[p][k];
if(mxlen[t] == mxlen[p] + 1){
fa[np] = t;
}
else{
int nt = newnode();
memcpy(node[nt], node[t], sizeof(node[t]));
fa[nt] = fa[t];
mxlen[nt] = mxlen[p] + 1;
fa[np] = fa[t] = nt;
for(; p && node[p][k] == t; p = fa[p])
node[p][k] = nt;
}
}
}
void Sort(int len){
//桶排,按照len从小到大排序节点
for(int i = 1; i <= sz; i++) x[mxlen[i]]++;
for(int i = 1; i <= len; i++) x[i] += x[i - 1];
for(int i = 1; i <= sz; i++) rk[x[mxlen[i]]--] = i;
for(int i = 1; i <= sz; i++) mn[i] = mxlen[i];
}
int tmp[maxn << 1];
void build(char *s){
for(int i = 0; i <= sz; i++) tmp[i] = 0;
int len = strlen(s);
int pos = 1;
int ret = 0;
for(int i = 0; i < len; i++){
int c = s[i] - 'a';
while(pos && node[pos][c] == 0){
pos = fa[pos];
ret = mxlen[pos];
}
if(pos == 0){
ret = 0;
pos = 1;
}
else{
pos = node[pos][c];
ret++;
}
tmp[pos] = max(tmp[pos], ret);
}
for(int i = sz; i >= 1; i--){
int c = rk[i];
tmp[fa[c]] = min(max(tmp[fa[c]], tmp[c]), mxlen[fa[c]]);
}
for(int i = 1; i <= sz; i++){
mn[i] = min(mn[i], tmp[i]);
}
}
void query(){
int ret = 0;
for(int i = 1; i <= sz; i++) ret = max(ret, mn[i]);
printf("%d\n", ret);
}
}sam;
char s[maxn];
int main(){
sam.init();
scanf("%s", s);
int len = strlen(s);
for(int i = 0; i < len; i++) sam.insert(s[i] - 'a');
sam.Sort(len);
sam.build(s);
while(~scanf("%s", s)){
sam.build(s);
}
sam.query();
return 0;
}
SPOJ - LCS2 Longest Common Substring II(后缀自动机)题解的更多相关文章
- SPOJ LCS2 - Longest Common Substring II 后缀自动机 多个串的LCS
LCS2 - Longest Common Substring II no tags A string is finite sequence of characters over a non-emp ...
- SPOJ LCS2 Longest Common Substring II ——后缀自动机
后缀自动机裸题 #include <cstdio> #include <cstring> #include <iostream> #include <algo ...
- SPOJ 1812 LCS2 - Longest Common Substring II (后缀自动机、状压DP)
手动博客搬家: 本文发表于20181217 23:54:35, 原地址https://blog.csdn.net/suncongbo/article/details/85058680 人生第一道后缀自 ...
- 【SPOJ】Longest Common Substring(后缀自动机)
[SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...
- spoj 1812 LCS2 - Longest Common Substring II (后缀自己主动机)
spoj 1812 LCS2 - Longest Common Substring II 题意: 给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串. 限制: 1 < ...
- SPOJ LCS2 - Longest Common Substring II
LCS2 - Longest Common Substring II A string is finite sequence of characters over a non-empty finite ...
- SPOJ LCS2 - Longest Common Substring II 字符串 SAM
原文链接http://www.cnblogs.com/zhouzhendong/p/8982484.html 题目传送门 - SPOJ LCS2 题意 求若干$(若干<10)$个字符串的最长公共 ...
- [SPOJ1812]Longest Common Substring II 后缀自动机 多个串的最长公共子串
题目链接:http://www.spoj.com/problems/LCS2/ 其实两个串的LCS会了,多个串的LCS也就差不多了. 我们先用一个串建立后缀自动机,然后其它的串在上面跑.跑的时候算出每 ...
- SPOJ LCS Longest Common Substring(后缀自动机)题解
题意: 求两个串的最大\(LCS\). 思路: 把第一个串建后缀自动机,第二个串跑后缀自动机,如果一个节点失配了,那么往父节点跑,期间更新答案即可. 代码: #include<set> # ...
随机推荐
- 使用Azure Runbook 发送消息到Azure Storage Queue
客户需要定时发送信息到Azure Storage Queue,所以尝试使用Azure Runbook实现这个需求. 首先新增一个Azure Automation Account的资源. 因为要使用Az ...
- JVM学习-运行时数据区域
目录 前言 运行时数据区 程序计数器 Java虚拟机栈 局部变量表 基础数据类型 对象引用 returnAddress 操作数栈 动态链接 方法返回地址 Java堆 方法区 类型信息 字段描述符 方法 ...
- Soul 网关 Nacos 数据同步源码解析
学习目标: 学习Soul 网关 Nacos 数据同步源码解析 学习内容: 环境配置 Soul 网关 Nacos 数据同步基本概念 源码分析 学习时间:2020年1月28号 早7点 学习产出: 环境配置 ...
- 封装JSONP 函数,方便请求发送
封装JSONP 函数,方便请求发送 封装jsonp的代码和封装Ajax的代码非常的相似!可以参照食用偶! <button id="btn">点击我发送请求!</b ...
- xftp 提示无法显示远程文件夹
在用xftp远程服务器,打开文件夹的时候一直提示"无法显示远程文件夹" 解决方案: 1.网上大多解决方案是文件->属性->选项->将使用被动模式选项去掉即可 2. ...
- XCTF-黑客精神
杂言 前段时间键盘坏了,电脑硬盘也坏了,买东西装系统再偷个懒放了一周左右假.期间学习巩固了一下安卓开发的知识.用了固态才知道什么叫纵享丝滑,当初就不该省这个钱. 前期工作 查壳,无.运行,点击按钮就跳 ...
- C/C++ ===复习==函数返回值问题(集合体==网络)
按值传递 地址传递: 应该明白只有这2种传递,下面讨论函数的按值传递 #include <stdio.h> #include <stdlib.h> int add_rtVal( ...
- OsgEarth开发笔记(一):Osg3.6.3+OsgEarth3.1+vs2019x64开发环境搭建(上)
前言 OSG研究之后,做地理GIS显示了地球:<项目实战:Qt+OSG教育学科工具之地理三维星球>,这一文章是基于OSG做的,而基于OsgEarth是可以进一步对地球进行深度操作,所以 ...
- (EX)中国剩余定理
中国剩余定理 问题引入: 有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二.问物几何?<孙子算经> 就是计算一个数\(x\)满足\(\begin{cases} x≡2(MOD\ 3) ...
- P2765 魔术球问题 (网络流)
题意:n根柱子 把编号1,2,3....的球依次插到柱子上去 需要满足相邻的两个球编号加起来为完全平方数 n < 55 题解:网络流24(23)题里的 但是一直不知道怎么建图 或者说建图的意义 ...