SPOJ - LCS2 Longest Common Substring II(后缀自动机)题解
题意:
求\(n\)个串的最大\(LCS\)。
思路:
把第一个串建后缀自动机,然后枚举所有串。对于每个串,求出这个串在\(i\)节点的最大匹配为\(temp[i]\)(当前串在这个节点最多取多少),然后我们求出最终所有串在\(i\)节点的匹配最小值\(mn[i]\)(即为所有串在\(i\)节点都能取到多少),答案即为\(max\{min[i]\}\)。
但是我们能发现,如果我们更新了\(temp[i]\),那么其实\(fa[i]\)的\(temp[fa[i]]\)也应该要更新,因为父节点是我的后缀子串,只是我没有走过去而已,并且\(temp[fa[i]] = max(temp[fa[i]], \ max(temp[i],\ mxlen[fa[i]]))\),因为父节点的匹配长度不能超过他本身长度。
为了能线性实现如上操作,我们按照\(mxlen\)大小桶排,因为父节点的\(mxlen\)一定小于子节点,那么我直接倒着更新就能保证我更新父节点时自己一定已经更新过了。
黄某讲的挺好,点击前往
代码:
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<bitset>
#include<string>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 10;
typedef long long ll;
const ll MOD = 1e9 + 7;
int x[maxn << 1], rk[maxn << 1];
//桶排,按照len从小到大排序节点
struct SAM{
int node[maxn << 1][26], fa[maxn << 1], mxlen[maxn << 1];
int mn[maxn << 1];
int sz, last;
int newnode(){
++sz;
memset(node[sz], 0, sizeof(node[sz]));
fa[sz] = mxlen[sz] = 0;
return sz;
}
void init(){
sz = 0;
last = newnode();
}
void insert(int k){
int p = last, np = last = newnode();
mxlen[np] = mxlen[p] + 1;
for(; p && !node[p][k]; p = fa[p])
node[p][k] = np;
if(p == 0){
fa[np] = 1;
}
else{
int t = node[p][k];
if(mxlen[t] == mxlen[p] + 1){
fa[np] = t;
}
else{
int nt = newnode();
memcpy(node[nt], node[t], sizeof(node[t]));
fa[nt] = fa[t];
mxlen[nt] = mxlen[p] + 1;
fa[np] = fa[t] = nt;
for(; p && node[p][k] == t; p = fa[p])
node[p][k] = nt;
}
}
}
void Sort(int len){
//桶排,按照len从小到大排序节点
for(int i = 1; i <= sz; i++) x[mxlen[i]]++;
for(int i = 1; i <= len; i++) x[i] += x[i - 1];
for(int i = 1; i <= sz; i++) rk[x[mxlen[i]]--] = i;
for(int i = 1; i <= sz; i++) mn[i] = mxlen[i];
}
int tmp[maxn << 1];
void build(char *s){
for(int i = 0; i <= sz; i++) tmp[i] = 0;
int len = strlen(s);
int pos = 1;
int ret = 0;
for(int i = 0; i < len; i++){
int c = s[i] - 'a';
while(pos && node[pos][c] == 0){
pos = fa[pos];
ret = mxlen[pos];
}
if(pos == 0){
ret = 0;
pos = 1;
}
else{
pos = node[pos][c];
ret++;
}
tmp[pos] = max(tmp[pos], ret);
}
for(int i = sz; i >= 1; i--){
int c = rk[i];
tmp[fa[c]] = min(max(tmp[fa[c]], tmp[c]), mxlen[fa[c]]);
}
for(int i = 1; i <= sz; i++){
mn[i] = min(mn[i], tmp[i]);
}
}
void query(){
int ret = 0;
for(int i = 1; i <= sz; i++) ret = max(ret, mn[i]);
printf("%d\n", ret);
}
}sam;
char s[maxn];
int main(){
sam.init();
scanf("%s", s);
int len = strlen(s);
for(int i = 0; i < len; i++) sam.insert(s[i] - 'a');
sam.Sort(len);
sam.build(s);
while(~scanf("%s", s)){
sam.build(s);
}
sam.query();
return 0;
}
SPOJ - LCS2 Longest Common Substring II(后缀自动机)题解的更多相关文章
- SPOJ LCS2 - Longest Common Substring II 后缀自动机 多个串的LCS
LCS2 - Longest Common Substring II no tags A string is finite sequence of characters over a non-emp ...
- SPOJ LCS2 Longest Common Substring II ——后缀自动机
后缀自动机裸题 #include <cstdio> #include <cstring> #include <iostream> #include <algo ...
- SPOJ 1812 LCS2 - Longest Common Substring II (后缀自动机、状压DP)
手动博客搬家: 本文发表于20181217 23:54:35, 原地址https://blog.csdn.net/suncongbo/article/details/85058680 人生第一道后缀自 ...
- 【SPOJ】Longest Common Substring(后缀自动机)
[SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...
- spoj 1812 LCS2 - Longest Common Substring II (后缀自己主动机)
spoj 1812 LCS2 - Longest Common Substring II 题意: 给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串. 限制: 1 < ...
- SPOJ LCS2 - Longest Common Substring II
LCS2 - Longest Common Substring II A string is finite sequence of characters over a non-empty finite ...
- SPOJ LCS2 - Longest Common Substring II 字符串 SAM
原文链接http://www.cnblogs.com/zhouzhendong/p/8982484.html 题目传送门 - SPOJ LCS2 题意 求若干$(若干<10)$个字符串的最长公共 ...
- [SPOJ1812]Longest Common Substring II 后缀自动机 多个串的最长公共子串
题目链接:http://www.spoj.com/problems/LCS2/ 其实两个串的LCS会了,多个串的LCS也就差不多了. 我们先用一个串建立后缀自动机,然后其它的串在上面跑.跑的时候算出每 ...
- SPOJ LCS Longest Common Substring(后缀自动机)题解
题意: 求两个串的最大\(LCS\). 思路: 把第一个串建后缀自动机,第二个串跑后缀自动机,如果一个节点失配了,那么往父节点跑,期间更新答案即可. 代码: #include<set> # ...
随机推荐
- Dubbo的设计理念原来就藏在这三张图中
Dubbo在众多的微服务框架中脱颖而出,占据RPC服务框架的半壁江山,非常具有普适性,熟练掌握 Dubbo的应用技巧后深刻理解其内部实现原理,让大家能更好的掌控工作,助力职场,特别能让大家在面试中脱颖 ...
- Docker下梦织CMS的部署
摘要:Docker的广泛应用相对于传统的虚拟机而言提高了资源的利用率,推广后docker的影响不容忽视,在启动速度.硬盘.内存.运行密度.性能.隔离性和迁移性方面都有很大的提高.本次实训我们在cent ...
- Databricks 第9篇:Spark SQL 基础(数据类型、NULL语义)
Spark SQL 支持多种数据类型,并兼容Python.Scala等语言的数据类型. 一,Spark SQL支持的数据类型 整数系列: BYTE, TINYINT:表示1B的有符号整数 SHORT, ...
- 并发条件队列之Condition 精讲
1. 条件队列的意义 Condition将Object监控器方法( wait , notify和notifyAll )分解为不同的对象,从而通过与任意Lock实现结合使用,从而使每个对象具有多个等待集 ...
- ovs-ofctl命令
用于监控和管理 OpenFlow 交换机. 1. 交换机管理命令 查看交换机信息: ovs-ofctl show s1 查看交换机流表: ovs-ofctl dump-tables s1 查看端口信 ...
- SELECT ... FOR UPDATE or SELECT ... FOR SHARE Locking Reads session
小结: 1.注意使用限制 Locking reads are only possible when autocommit is disabled (either by beginning transa ...
- Advanced Go Concurrency Patterns
https://talks.golang.org/2013/advconc.slide#5 It's easy to go, but how to stop? Long-lived programs ...
- 用tqdm和rich为固定路径和目标的python算法代码实现进度条
适用场景 在存在固定长度的算法中可以可视化算法执行的过程,比如对一个固定长度的数组的遍历,就是一种适合使用进度条来进行可视化的场景.而一些条件循环,比如while循环,不一定适合使用进度条来对算法执行 ...
- 为什么Redis集群要使用反向代理?
为什么要使用反向代理? 如果没有方向代理,一台Redis可能需要跟很多个客户端连接: 看着是不是很慌?看没关系,主要是连接需要消耗线程资源,没有代理的话,Redis要将很大一部分的资源用在与客户端建立 ...
- LOJ2723
LOJ2723 Get Luffy Out 题目大意:给你n对钥匙,每对钥匙只可以用其中的任意一个,钥匙有编号,且不重复.有m个大门,每个门上有两个锁,每个锁对应一个编号的钥匙,只要打开两个锁中的一个 ...