SPOJ - LCS2 Longest Common Substring II(后缀自动机)题解
题意:
求\(n\)个串的最大\(LCS\)。
思路:
把第一个串建后缀自动机,然后枚举所有串。对于每个串,求出这个串在\(i\)节点的最大匹配为\(temp[i]\)(当前串在这个节点最多取多少),然后我们求出最终所有串在\(i\)节点的匹配最小值\(mn[i]\)(即为所有串在\(i\)节点都能取到多少),答案即为\(max\{min[i]\}\)。
但是我们能发现,如果我们更新了\(temp[i]\),那么其实\(fa[i]\)的\(temp[fa[i]]\)也应该要更新,因为父节点是我的后缀子串,只是我没有走过去而已,并且\(temp[fa[i]] = max(temp[fa[i]], \ max(temp[i],\ mxlen[fa[i]]))\),因为父节点的匹配长度不能超过他本身长度。
为了能线性实现如上操作,我们按照\(mxlen\)大小桶排,因为父节点的\(mxlen\)一定小于子节点,那么我直接倒着更新就能保证我更新父节点时自己一定已经更新过了。
黄某讲的挺好,点击前往
代码:
#include<set>
#include<map>
#include<cmath>
#include<queue>
#include<bitset>
#include<string>
#include<cstdio>
#include<vector>
#include<cstring>
#include <iostream>
#include<algorithm>
using namespace std;
const int maxn = 100000 + 10;
typedef long long ll;
const ll MOD = 1e9 + 7;
int x[maxn << 1], rk[maxn << 1];
//桶排,按照len从小到大排序节点
struct SAM{
int node[maxn << 1][26], fa[maxn << 1], mxlen[maxn << 1];
int mn[maxn << 1];
int sz, last;
int newnode(){
++sz;
memset(node[sz], 0, sizeof(node[sz]));
fa[sz] = mxlen[sz] = 0;
return sz;
}
void init(){
sz = 0;
last = newnode();
}
void insert(int k){
int p = last, np = last = newnode();
mxlen[np] = mxlen[p] + 1;
for(; p && !node[p][k]; p = fa[p])
node[p][k] = np;
if(p == 0){
fa[np] = 1;
}
else{
int t = node[p][k];
if(mxlen[t] == mxlen[p] + 1){
fa[np] = t;
}
else{
int nt = newnode();
memcpy(node[nt], node[t], sizeof(node[t]));
fa[nt] = fa[t];
mxlen[nt] = mxlen[p] + 1;
fa[np] = fa[t] = nt;
for(; p && node[p][k] == t; p = fa[p])
node[p][k] = nt;
}
}
}
void Sort(int len){
//桶排,按照len从小到大排序节点
for(int i = 1; i <= sz; i++) x[mxlen[i]]++;
for(int i = 1; i <= len; i++) x[i] += x[i - 1];
for(int i = 1; i <= sz; i++) rk[x[mxlen[i]]--] = i;
for(int i = 1; i <= sz; i++) mn[i] = mxlen[i];
}
int tmp[maxn << 1];
void build(char *s){
for(int i = 0; i <= sz; i++) tmp[i] = 0;
int len = strlen(s);
int pos = 1;
int ret = 0;
for(int i = 0; i < len; i++){
int c = s[i] - 'a';
while(pos && node[pos][c] == 0){
pos = fa[pos];
ret = mxlen[pos];
}
if(pos == 0){
ret = 0;
pos = 1;
}
else{
pos = node[pos][c];
ret++;
}
tmp[pos] = max(tmp[pos], ret);
}
for(int i = sz; i >= 1; i--){
int c = rk[i];
tmp[fa[c]] = min(max(tmp[fa[c]], tmp[c]), mxlen[fa[c]]);
}
for(int i = 1; i <= sz; i++){
mn[i] = min(mn[i], tmp[i]);
}
}
void query(){
int ret = 0;
for(int i = 1; i <= sz; i++) ret = max(ret, mn[i]);
printf("%d\n", ret);
}
}sam;
char s[maxn];
int main(){
sam.init();
scanf("%s", s);
int len = strlen(s);
for(int i = 0; i < len; i++) sam.insert(s[i] - 'a');
sam.Sort(len);
sam.build(s);
while(~scanf("%s", s)){
sam.build(s);
}
sam.query();
return 0;
}
SPOJ - LCS2 Longest Common Substring II(后缀自动机)题解的更多相关文章
- SPOJ LCS2 - Longest Common Substring II 后缀自动机 多个串的LCS
LCS2 - Longest Common Substring II no tags A string is finite sequence of characters over a non-emp ...
- SPOJ LCS2 Longest Common Substring II ——后缀自动机
后缀自动机裸题 #include <cstdio> #include <cstring> #include <iostream> #include <algo ...
- SPOJ 1812 LCS2 - Longest Common Substring II (后缀自动机、状压DP)
手动博客搬家: 本文发表于20181217 23:54:35, 原地址https://blog.csdn.net/suncongbo/article/details/85058680 人生第一道后缀自 ...
- 【SPOJ】Longest Common Substring(后缀自动机)
[SPOJ]Longest Common Substring(后缀自动机) 题面 Vjudge 题意:求两个串的最长公共子串 题解 \(SA\)的做法很简单 不再赘述 对于一个串构建\(SAM\) 另 ...
- spoj 1812 LCS2 - Longest Common Substring II (后缀自己主动机)
spoj 1812 LCS2 - Longest Common Substring II 题意: 给出最多n个字符串A[1], ..., A[n], 求这n个字符串的最长公共子串. 限制: 1 < ...
- SPOJ LCS2 - Longest Common Substring II
LCS2 - Longest Common Substring II A string is finite sequence of characters over a non-empty finite ...
- SPOJ LCS2 - Longest Common Substring II 字符串 SAM
原文链接http://www.cnblogs.com/zhouzhendong/p/8982484.html 题目传送门 - SPOJ LCS2 题意 求若干$(若干<10)$个字符串的最长公共 ...
- [SPOJ1812]Longest Common Substring II 后缀自动机 多个串的最长公共子串
题目链接:http://www.spoj.com/problems/LCS2/ 其实两个串的LCS会了,多个串的LCS也就差不多了. 我们先用一个串建立后缀自动机,然后其它的串在上面跑.跑的时候算出每 ...
- SPOJ LCS Longest Common Substring(后缀自动机)题解
题意: 求两个串的最大\(LCS\). 思路: 把第一个串建后缀自动机,第二个串跑后缀自动机,如果一个节点失配了,那么往父节点跑,期间更新答案即可. 代码: #include<set> # ...
随机推荐
- JDK的各个版本
Java的各个版本 从上图我们看出,Java的版本名最开始以JDK开头,后来以j2se开头,最后到现在以Java开头,所以这些名字我们都可以说,但人们说的更多的是JDK多少,或者Java多少
- linux--关于JVM CPU资源占用过高的问题排查
一.背景: 先执行一个java程序里面开了两个线程分别都在while循环做打印操作. # java -cp ./test-threads.jar com.spiro.Main 二.现象: 通过top命 ...
- jQuery mock.js模拟的使用
<!DOCTYPE html> <html> <head> <meta charset="utf-8" /> <title&g ...
- 签名 sign key 纸质邮件 历史 RSA诞生历史
API接口签名校验,如何安全保存appsecret? - 知乎 https://www.zhihu.com/question/40855191 要保证一般的客户端-服务器通信安全,可以使用3个密钥. ...
- WPF Selector、SelectIndex、SelectedValue、SelectedValuePath、SelectedItem这几兄弟你分的清楚嘛?
Selector Selector是一个抽象类,继承ItemsControl类(包含任何类型的对象(例如字符串,图像或面板)的集合),而本文的4个兄弟都是Selector类下的4个属性. Select ...
- CF1428C
Description 有一个只包含'A'与'B'的字符串,每次可以消掉一个 "AB" 或一个 "BB",并把剩下的拼在一起,求字符串最短的长度. 题意已经够简 ...
- 根据pom标签修改
sed -i "s/<count>1<\/count>/<count>2<\/count>/g" pom.xml
- Python Package(转)
http://www.cnpythoner.com/post/2.html python中的Module是比较重要的概念.常见的情况是,事先写好一个.py文 件,在另一个文件中需要import时,将事 ...
- apache和LAMP架构
资源池: httpd依赖包:apr 和 apr-util 下载:点击这里 httpd 下载:点击这里 mysql 下载:点击这里 php 下载: 点击这里 本章资源: 点击这里 资源提取码:u2jv ...
- Nacos服务心跳和健康检查源码介绍
服务心跳 Nacos Client会维护一个定时任务通过持续调用服务端的接口更新心跳时间,保证自己处于存活状态,防止服务端将服务剔除,Nacos默认5秒向服务端发送一次,通过请求服务端接口/insta ...