题目链接:https://codeforces.com/contest/1363/problem/A

题意

判断是否能从 $n$ 个数中选 $x$ 个数加起来和为奇数。

题解

首先 $n$ 个数中至少需要有 $1$ 个奇数,之后为了不影响和的奇偶性向余下 $x-1$ 个数中加入成对的奇数或单个偶数即可。

代码

#include <bits/stdc++.h>
using namespace std; void solve() {
int n, x; cin >> n >> x;
int odd = 0, even = 0;
for (int i = 0; i < n; i++) {
int t; cin >> t;
if (t & 1) ++odd;
else ++even;
}
if (odd == 0) cout << "No" << "\n";
else {
--x, --odd;
x -= 2 * min(x / 2, odd / 2);
cout << (even >= x ? "Yes" : "No") << "\n";
}
} int main() {
int t; cin >> t;
while (t--) solve();
}

Codeforces Round #646 (Div. 2) A. Odd Selection(数学)的更多相关文章

  1. Codeforces Round #646 (Div. 2) 题解 (ABCDE)

    目录 A. Odd Selection B. Subsequence Hate C. Game On Leaves D. Guess The Maximums E. Tree Shuffling ht ...

  2. Codeforces Round #575 (Div. 3) B. Odd Sum Segments (构造,数学)

    B. Odd Sum Segments time limit per test3 seconds memory limit per test256 megabytes inputstandard in ...

  3. Codeforces Round #646 (Div. 2) E. Tree Shuffling(树上dp)

    题目链接:https://codeforces.com/contest/1363/problem/E 题意 有一棵 $n$ 个结点,根为结点 $1$ 的树,每个结点有一个选取代价 $a_i$,当前 $ ...

  4. Codeforces Round #646 (Div. 2) C. Game On Leaves(树上博弈)

    题目链接:https://codeforces.com/contest/1363/problem/C 题意 有一棵 $n$ 个结点的树,每次只能取叶子结点,判断谁能最先取到结点 $x$ . 题解 除非 ...

  5. Codeforces Round #646 (Div. 2) B. Subsequence Hate(前缀和)

    题目链接:https://codeforces.com/contest/1363/problem/B 题意 可以将 $01$ 串中的 $0$ 变为 $1$.$1$ 变为 $0$,问至少需要变换多少字符 ...

  6. Codeforces Round #646 (Div. 2)【B. Subsequence Hate题解】

    具体思路已经在代码注释中给出,这里不再赘述. #include<iostream> #include<algorithm> using namespace std; int t ...

  7. Codeforces Round #646 (Div. 2)【C. Game On Leaves 题解】

    题意分析 关于这道题,意思就是两个人摘叶子,谁最后摘到编号为x的谁就赢了.既然是叶子,说明其最多只有一个分支,由于题目上说了是无向图,那就是度数小于等于的节点.也就是一步步移除度数小于等于的节点,直到 ...

  8. Codeforces Round #646 (Div. 2) C、Game On Leaves

    题目链接:C.Game On Leaves 题意: 给你一个n个节点的无根树,你每次可以删除一个叶节点.如果谁先删除x号节点谁就赢了.两个人轮流操作 题解: 如果x号节点本身就是一个叶节点,那么谁先走 ...

  9. Codeforces Round #646 (Div. 2) E. Tree Shuffling dfs

    题意: 给你n个节点,这n个节点构成了一颗以1为树根的树.每一个节点有一个初始值bi,从任意节点 i 的子树中选择任意k个节点,并按他的意愿随机排列这些节点中的数字,从而产生k⋅ai 的成本.对于一个 ...

随机推荐

  1. epoll的陷阱

    Starvation 特别提出在ET模式下,因为需要一次性把数据读完,如果一次性通知的数据过大,有可能处理时间过长,导致同一线程其他的事件长时间等待.这个不仅仅是ET模式下,也不仅仅是epoll模型下 ...

  2. 【MySQL 高级】索引优化分析

    MySQL高级 索引优化分析 SQL 的效率问题 出现性能下降,SQL 执行慢,执行时间长,等待时间长等情况,可能的原因有: 查询语句写的不好 索引失效 单值索引:在 user 表中给 name 属性 ...

  3. Docker 镜像基础(三)

    基于Dockerfile制作yum版本nginx镜像 [root@node-2 ~]# mkdir /opt/nginx [root@node-2 ~]# cd /opt/nginx/ ## 创建Do ...

  4. python学习笔记 | wordcloud安装指南

    问题: 直接在命令行输入: pip install wordcloud 不出意外,直接报错,显示缺失vc*****.bat,意思是缺失vc版本,这个安装方式基本可以扔掉. 解决: http://t.c ...

  5. Java 使用 mail.jar 实现邮件发送

    目录 准备工作 使用到的 jar 包 实现代码 准备工作 要想实现邮件发送, 需要先打开发送邮箱的 POP3/SMTP 服务,打开方式在 设置>帐户 中去打开,打开之后如果是qq邮箱会获得一个授 ...

  6. 攻防世界—pwn—int_overflow

    题目分析 checksec检查文件保护机制 ida分析程序 经典整数溢出漏洞示例 整数溢出原理整数分为有符号和无符号两种类型,有符号数以最高位作为其符号位,即正整数最高位为1,负数为0, 无符号数取值 ...

  7. C++导言与入门

    写在开始 计算机编程语言: Remember that a program is just a sequence of instructions telling a computer what to ...

  8. 1.8V转3V,1,8V转3.3V电源芯片的规格书参数

    1.8V电平如何稳压稳定输出3V或者3.3V,就需要用到1.8V转3V,1,8V转3.3V电源芯片,就PW5100(低功耗,外围简单),PW5200A是可调输出电压,可以输出电压根据外围电阻来设置命令 ...

  9. QUIC协议分析-基于quic-go

    quic协议分析 QUIC是由谷歌设计的一种基于UDP的传输层网络协议,并且已经成为IETF草案.HTTP/3就是基于QUIC协议的.QUIC只是一个协议,可以通过多种方法来实现,目前常见的实现有Go ...

  10. Django Full Coverage

    Django(个人推荐, 如果项目较大 需要协同开发, 建议使用django这种重量级框架, 如果类似于纯api的后端应用建议使用 flask, 轻量小巧 , 麻雀虽小五脏俱全) 1.Django是什 ...