Problem Description
There is a path graph G=(V,E) with n vertices.
Vertices are numbered from 1 to n and
there is an edge with unit length between i and i+1 (1≤i<n).
To make the graph more interesting, someone adds three more edges to the graph. The length of each new edge is 1.

You are given the graph and several queries about the shortest path between some pairs of vertices.
 

Input
There are multiple test cases. The first line of input contains an integer T,
indicating the number of test cases. For each test case:

The first line contains two integer n and m (1≤n,m≤105) --
the number of vertices and the number of queries. The next line contains 6 integers a1,b1,a2,b2,a3,b3 (1≤a1,a2,a3,b1,b2,b3≤n),
separated by a space, denoting the new added three edges are (a1,b1), (a2,b2), (a3,b3).

In the next m lines,
each contains two integers si and ti (1≤si,ti≤n),
denoting a query.

The sum of values of m in
all test cases doesn't exceed 106.
 

Output
For each test cases, output an integer S=(∑i=1mi⋅zi) mod (109+7),
where zi is
the answer for i-th
query.
 

Sample Input

1
10 2
2 4 5 7 8 10
1 5
3 1
 

Sample Output

7

题意:给你一条n个点组成的链,相邻两点的距离为1,再给你三条边,这三条边的端点都是链上的点,且每一条的距离为1。有m个询问,问你对于每两个点,从一个端点到另一个端点的最近距离是多少。

思路:可以先初始化3条边中6个点两两之间的最短距离,这个可以用floyd做,那么对于每一个询问,两个点x1,x2的最短距离为不经过任何点,或者经过3条边中的某些边,又因为我们已经初始化出3条边中任意两个点的最短距离,所以我们只要枚举a,b,即x1到a,a到b,再b到x2的最近距离。这一题floyd初始化时关键,如果每次直接8个点floyd时间复杂度就爆了。

#include<iostream>
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#include<vector>
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<string>
#include<bitset>
#include<algorithm>
using namespace std;
typedef long long ll;
typedef long double ldb;
#define inf 1000000007
#define pi acos(-1.0)
#define MOD 1000000007
int dist[10][10];
void floyd()
{
int i,j,k;
for(k=1;k<=6;k++){
for(i=1;i<=6;i++){
for(j=1;j<=6;j++){
if(dist[i][j]>dist[i][k]+dist[k][j]){
dist[i][j]=dist[i][k]+dist[k][j];
} } } }
} int main()
{
int n,m,i,j,T,k;
int x[10];
int a1,b1,a2,b2,a3,b3;
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
scanf("%d%d%d%d%d%d",&x[1],&x[2],&x[3],&x[4],&x[5],&x[6]);
for(i=1;i<=6;i++){
for(j=1;j<=6;j++){
dist[i][j]=abs(x[i]-x[j]);
}
}
dist[1][2]=dist[2][1]=min(dist[1][2],1);
dist[3][4]=dist[4][3]=min(dist[3][4],1);
dist[5][6]=dist[6][5]=min(dist[5][6],1);
floyd(); ll sum=0;
for(k=1;k<=m;k++){
scanf("%d%d",&x[7],&x[8]);
int ans=abs(x[7]-x[8]);
for(i=1;i<=6;i++){
for(j=1;j<=6;j++){
ans=min(ans,abs(x[7]-x[i] )+abs(x[8]-x[j])+dist[i][j] );
ans=min(ans,abs(x[7]-x[j] )+abs(x[8]-x[i])+dist[i][j] ); }
} sum=(sum+(ll)ans*(ll)k)%MOD;
//printf("%d\n",floyd()); }
printf("%lld\n",sum); }
return 0; }

hdu5365Shortest Path (floyd)的更多相关文章

  1. HDU3631:Shortest Path(Floyd)

    Problem Description When YY was a boy and LMY was a girl, they trained for NOI (National Olympiad in ...

  2. HDU - 3631 Shortest Path(Floyd最短路)

    Shortest Path Time Limit: 1000MS Memory Limit: 32768KB 64bit IO Format: %I64d & %I64u SubmitStat ...

  3. [ZOJ2760]How Many Shortest Path(floyd+最大流)

    题目:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1760 题意:给你一个一个n*n(n<=100)的有向图,问你从s到 ...

  4. sdut1282Find the Path (floyd变形)

    http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=1282 感觉这题就比较有意思了 ,虽说是看了别人 ...

  5. 【ACM程序设计】求短路 Floyd算法

    最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...

  6. 【转】最短路&差分约束题集

    转自:http://blog.csdn.net/shahdza/article/details/7779273 最短路 [HDU] 1548 A strange lift基础最短路(或bfs)★254 ...

  7. 【转载】图论 500题——主要为hdu/poj/zoj

    转自——http://blog.csdn.net/qwe20060514/article/details/8112550 =============================以下是最小生成树+并 ...

  8. [matlab] 22.matlab图论实例 最短路问题与最小生成树 (转载)

    最短路问题之 Floyd 某公司在六个城市 c1c1,c2c2,….,c6c6 中有分公司,从 cici 到 cjcj 的直接航程票价记在下述矩阵的 (ii,jj) 位置上. (∞∞表示无直接航路), ...

  9. 【HDOJ图论题集】【转】

    =============================以下是最小生成树+并查集====================================== [HDU] How Many Table ...

随机推荐

  1. 【SpringBoot1.x】SpringBoot1.x 安全

    SpringBoot1.x 安全 文章源码 环境搭建 SpringSecurity 是针对 Spring 项目的安全框架,也是 SpringBoot 底层安全模块默认的技术选型.他可以实现强大的 we ...

  2. 【Java基础】集合

    集合 集合概述 一方面, 面向对象语言对事物的体现都是以对象的形式,为了方便对多个对象 的操作,就要对对象进行存储.另一方面,使用 Array 存储对象方面具有一些弊端,而 Java 集合就像一种容器 ...

  3. MySQL使用SQL操作数据表的增加、修改和删除

    表的修改和删除 修改 -- 修改表名称 -- ALTER TABLE 旧表名 RENAME AS 新表名 ALTER TABLE test RENAME AS test1 -- 增加表字段 -- AL ...

  4. 【Oracle】B-tree和函数索引

    转自:https://www.cnblogs.com/yumiko/p/5957613.html 函数索引 1.1 概述 在实际应用中,当条件列使用函数运算进行数据匹配时,即使该列建立了索引,索引也不 ...

  5. oracle 释放表空间到OS(resize)

    1.查看表空间里面的对象 SELECT OWNER AS OWNER, SEGMENT_NAME AS SEGMENT_NAME, SEGMENT_TYPE AS SEGMENT_TYPE, SUM ...

  6. 国内最具影响力科技创投媒体36Kr的容器化之路

    本文由1月19日晚36Kr运维开发工程师田翰明在Rancher技术交流群的技术分享整理而成.微信搜索rancher2,添加Rancher小助手为好友,加入技术群,实时参加下一次分享~ 田翰明,36Kr ...

  7. 把vscode打造成技术写作神器

    作为技术开发,大家平时肯定需要记录技术笔记.甚至有的同学还开通可自己的技术博客或者技术公众号进行创作. 这个时候有套趁手的写作工具尤为重要,节省下时间好好休息一下,对于咱们程序员来说更加重要.因为最近 ...

  8. typora+PicGo+gitee搭建免费的的床

    一.gitee 1.第一步拥有自己的gitee账号 没有的可以自己去注册gitee地址 2.使用自己的gitee账号创建仓库 创建好之后注意 记住.com/以后的地址 此处就为y***L/photo- ...

  9. InnoDB事务篇

    1.解决数据更新丢失的问题 1)LBCC:基于锁的并发控制.让操作串行化执行.效率低. 2)MVCC:基于版本的并发控制.使用快照形式.效率高.读写不冲突.主流数据库都是使用的MVCC. 2.Inno ...

  10. linux自定义位置安装tomcat8.5

    1 下载tomcat安装文件 下载地址:https://tomcat.apache.org/download-80.cgi  2 解压文件 tar -zxvf apache-tomcat-8.5.56 ...